Suppr超能文献

基于多模干涉成像和机器学习的光纤方向位置传感器。

Fiber directional position sensor based on multimode interference imaging and machine learning.

作者信息

Sun Kai, Ding Zhenming, Zhang Ziyang

出版信息

Appl Opt. 2020 Jul 1;59(19):5745-5751. doi: 10.1364/AO.394280.

Abstract

A fiber directional position sensor based on multimode interference and image processing by machine learning is presented. Upon single-mode injection, light in multimode fiber generates a multi-ring-shaped interference pattern at the end facet, which is susceptible to the amplitude and direction of the fiber distortions. The fiber is mounted on an automatic translation stage, with repeating movement in four directions. The images are captured from an infrared camera and fed to a machine-learning program to train, validate, and test the fiber conditions. As a result, accuracy over 97% is achieved in recognizing fiber positions in these four directions, each with 10 classes, totaling an 8 mm span. The number of images taken for each class is merely 320. Detailed investigation reveals that the system can achieve over 60% accuracy in recognizing positions on a 5 µm resolution with a larger dataset, approaching the limit of the chosen translation stage.

摘要

提出了一种基于多模干涉和机器学习图像处理的光纤方向位置传感器。在单模注入时,多模光纤中的光在端面产生多环形干涉图样,该图样易受光纤畸变的幅度和方向影响。光纤安装在自动平移台上,在四个方向上重复移动。从红外相机捕获图像并将其输入到机器学习程序中,以训练、验证和测试光纤状态。结果,在识别这四个方向上的光纤位置时,准确率超过97%,每个方向有10个类别,总跨度为8毫米。每个类别的图像数量仅为320张。详细研究表明,使用更大的数据集,该系统在识别5微米分辨率的位置时可以达到60%以上的准确率,接近所选平移台的极限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验