Suppr超能文献

氨基酸饥饿状态下的 RNA 结构的 Structure-seq2 探测揭示了. 中的已知和新的 RNA 开关。

Structure-seq2 probing of RNA structure upon amino acid starvation reveals both known and novel RNA switches in .

机构信息

Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

RNA. 2020 Oct;26(10):1431-1447. doi: 10.1261/rna.075986.120. Epub 2020 Jul 1.

Abstract

RNA structure influences numerous processes in all organisms. In bacteria, these processes include transcription termination and attenuation, small RNA and protein binding, translation initiation, and mRNA stability, and can be regulated via metabolite availability and other stresses. Here we use Structure-seq2 to probe the in vivo RNA structurome of grown in the presence and absence of amino acids. Our results reveal that amino acid starvation results in lower overall dimethyl sulfate (DMS) reactivity of the transcriptome, indicating enhanced protection owing to protein binding or RNA structure. Starvation-induced changes in DMS reactivity correlated inversely with transcript abundance changes. This correlation was particularly pronounced in genes associated with the stringent response and CodY regulons, which are involved in adaptation to nutritional stress, suggesting that RNA structure contributes to transcript abundance change in regulons involved in amino acid metabolism. Structure-seq2 accurately reported on four known amino acid-responsive riboswitches: T-box, SAM, glycine, and lysine riboswitches. Additionally, we discovered a transcription attenuation mechanism that reduces expression when amino acids are added to the growth medium. We also found that translation of a leader peptide (YfmH) encoded just upstream of regulates expression. Our results are consistent with a model in which a slow rate of translation caused by limitation of the amino acids encoded in YfmH prevents transcription termination in the leader region by favoring formation of an overlapping antiterminator structure. This novel RNA switch offers a way to simultaneously monitor the levels of multiple amino acids.

摘要

RNA 结构会影响所有生物的许多过程。在细菌中,这些过程包括转录终止和衰减、小 RNA 和蛋白质结合、翻译起始和 mRNA 稳定性,并且可以通过代谢物的可用性和其他应激来调节。在这里,我们使用 Structure-seq2 来探测在存在和不存在氨基酸的情况下生长的细菌的体内 RNA 结构组。我们的结果表明,氨基酸饥饿会导致整个转录组的二甲磺酸 (DMS) 反应性降低,这表明由于蛋白质结合或 RNA 结构而增强了保护。DMS 反应性的饥饿诱导变化与转录物丰度变化呈反比。这种相关性在与严格反应和 CodY 调控子相关的基因中尤为明显,这些基因参与适应营养压力,这表明 RNA 结构有助于参与氨基酸代谢的调控子中转录物丰度的变化。Structure-seq2 准确地报告了四个已知的氨基酸反应性核糖开关:T 盒、SAM、甘氨酸和赖氨酸核糖开关。此外,我们发现了一种转录衰减机制,当氨基酸添加到生长培养基中时,该机制会降低 的表达。我们还发现,编码在 上游的前导肽 (YfmH) 的翻译调节 的表达。我们的结果与一种模型一致,该模型认为,由于编码在 YfmH 中的氨基酸的限制导致 翻译的速度较慢,从而通过有利于形成重叠的反终止子结构来阻止 启动子区域的转录终止。这种新的 RNA 开关提供了一种同时监测多种氨基酸水平的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21b9/7491331/f9de252e88a6/1431f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验