Suppr超能文献

木质素基生物炭降解对硝基苯酚:氧化还原活性基团和孔结构的作用。

P-nitrophenol degradation by pine-wood derived biochar: The role of redox-active moieties and pore structures.

机构信息

Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China.

Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China.

出版信息

Sci Total Environ. 2020 Nov 1;741:140431. doi: 10.1016/j.scitotenv.2020.140431. Epub 2020 Jun 23.

Abstract

Biochar can both adsorb and degrade p-nitrophenol (PNP); however, the PNP degradation mechanism has not been well investigated. We prepared two biochars at pyrolysis temperatures of 500 °C (B500) and 700 °C (B700). Although B500 showed much stronger free radical signals (which are associated with organic degradation, according to previous studies), the apparent PNP degradation was approximately 3 times higher in the B700 system. The degradation increased significantly after the biochars were washed with water. According to a quantitative analysis of the sorption and degradation and two-compartment first-order kinetics modeling of the apparent removal kinetics, sorption occurred mainly in the initial period, whereas degradation continued throughout the removal process. The PNP degradation rate constant depended mainly on the external surface area at a relatively low concentration (200 mg/L) and was controlled by the microporous surface area at a relatively high concentration (800 mg/L). In addition, the apparent degradation did not depend on the biochar particle size. Therefore, PNP degradation may be related to the three-dimensional structure of the biochar in addition to the exposed external surface. The well-developed pore structure, more accessible surface, and larger electron exchange capacity of B700 may promote electron transfer between the biochar and PNP, and thus accelerate PNP degradation. This study demonstrates that various properties of the biochar may contribute to PNP degradation.

摘要

生物炭既可以吸附又可以降解对硝基苯酚(PNP);然而,PNP 的降解机制尚未得到很好的研究。我们分别在 500°C(B500)和 700°C(B700)下制备了两种生物炭。尽管 B500 显示出更强的自由基信号(根据先前的研究,这与有机降解有关),但 B700 体系中 PNP 的表观降解速率约高 3 倍。生物炭用去离子水洗涤后,降解率显著提高。根据吸附和降解的定量分析以及表观去除动力学的两室一级动力学模型,吸附主要发生在初始阶段,而降解则持续整个去除过程。在较低浓度(200mg/L)时,PNP 降解速率常数主要取决于外比表面积,而在较高浓度(800mg/L)时,降解速率常数主要取决于微孔表面积。此外,表观降解率与生物炭粒径无关。因此,PNP 的降解可能与生物炭的三维结构有关,而不仅仅是暴露的外比表面积。B700 发达的孔结构、更多的可及表面和更大的电子交换能力可能促进生物炭和 PNP 之间的电子转移,从而加速 PNP 的降解。本研究表明,生物炭的各种性质可能有助于 PNP 的降解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验