Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada.
Department of Physiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.
Exp Physiol. 2020 Sep;105(9):1540-1549. doi: 10.1113/EP088746. Epub 2020 Jul 19.
What is the central question of this study? What are the characteristics of cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. What is the main finding and its importance? Acute alterations in CBF regulation at rest, including extra-cranial vasodilatation, reductions in shear patterns and elevations in intra-cranial blood velocity were observed at rest following a single SCUBA dive. These subtle changes in CBF regulation did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or neurovascular coupling following a single SCUBA dive.
Reductions in vascular function during a SCUBA dive - due to hyperoxia-induced oxidative stress, arterial and venous gas emboli and altered endothelial integrity - may also extend to the cerebrovasculature following return to the surface. This study aimed to characterize cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. Prior to and following the dive, participants (n = 11) completed (1) resting CBF in the internal carotid (ICA) and vertebral (VA) arteries (duplex ultrasound) and intra-cranial blood velocity (v) of the middle and posterior cerebral arteries (MCAv and PCAv, respectively) (transcranial Doppler ultrasound); (2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e. , 0.10) and hyperoxia (i.e. , 1.0); and (3) neurovascular coupling (NVC; regional CBF response to local increases in cerebral metabolism). Global CBF, cerebrovascular reactivity to hypoxia and hyperoxia, and NVC were unaltered following a SCUBA dive (all P > 0.05); however, there were subtle changes in other cerebrovascular metrics post-dive, including reductions in ICA (-13 ± 8%, P = 0.003) and VA (-11 ± 14%, P = 0.021) shear rate, lower ICAv (-10 ± 9%, P = 0.008) and VAv (-9 ± 14%, P = 0.028), increases in ICA diameter (+4 ± 5%, P = 0.017) and elevations in PCAv (+10 ± 19%, P = 0.047). Although we observed subtle alterations in CBF regulation at rest, these changes did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or NVC. Whether prolonged exposure to hyperoxia and hyperbaria during longer, deeper, colder and/or repetitive SCUBA dives would provoke changes to the cerebrovasculature requires further investigation.
这项研究的核心问题是什么?在单次水肺潜水至 18 米深的海水,底部停留时间为 47 分钟后,大脑血液流动(CBF)调节的特点是什么?主要发现及其重要性是什么?在单次水肺潜水后,在休息时观察到 CBF 调节的急性变化,包括颅外血管扩张、剪切模式减少和颅内血液速度升高。在单次水肺潜水后,CBF 调节的这些细微变化并没有转化为对缺氧或高氧的脑血管反应性或神经血管偶联的任何功能变化。
在水肺潜水过程中,由于氧化应激、动脉和静脉气体栓塞以及内皮完整性改变引起的血管功能下降,也可能在返回水面后延伸到脑血管系统。本研究旨在描述单次水肺潜水至 18 米深的海水,底部停留时间为 47 分钟后大脑血液流动(CBF)的调节。在潜水之前和之后,参与者(n=11)完成了(1)颈内动脉(ICA)和椎动脉(VA)的静息 CBF(双功能超声)和大脑中动脉(MCAv)和大脑后动脉(PCAv)的颅内血液速度(v)(经颅多普勒超声);(2)急性高碳酸缺氧(即, ,0.10)和高氧(即, ,1.0)时的脑血管反应性;和(3)神经血管偶联(NVC;局部脑代谢增加时的区域性 CBF 反应)。潜水后,CBF 整体、对缺氧和高氧的脑血管反应性以及 NVC 均未发生变化(均 P>0.05);然而,在潜水后其他脑血管指标存在细微变化,包括 ICA 剪切率降低(-13±8%,P=0.003)和 VA(-11±14%,P=0.021),ICAv 和 VAv 降低(-10±9%,P=0.008 和-9±14%,P=0.028),ICA 直径增加(+4±5%,P=0.017)和 PCAv 升高(+10±19%,P=0.047)。尽管我们在休息时观察到 CBF 调节的细微变化,但这些变化并未转化为对缺氧或高氧的脑血管反应性或 NVC 的任何功能变化。在更长、更深、更冷和/或更频繁的水肺潜水过程中,长时间暴露于高氧和高压环境是否会引起脑血管变化,还需要进一步研究。