Department of Biophysics, Faculty of Biology, Moscow State University, Moscow 119991, Russia.
Biochim Biophys Acta Bioenerg. 2020 Oct 1;1861(10):148257. doi: 10.1016/j.bbabio.2020.148257. Epub 2020 Jul 1.
Export of reducing power from chloroplasts to cytoplasm serves to balance the NADPH/ATP ratio that is optimal for CO assimilation. Rapid cytoplasmic streaming in characean algae conveys the exported metabolites downstream towards the shaded plastids where envelope transporters may operate for the import of reducing power in accordance with the direction of concentration gradients. Import of reducing equivalents by chloroplasts in the analyzed area transiently enhances the pulse-modulated chlorophyll fluorescence F' controlled by the redox state of photosystem II acceptor Q. When the microfluidic pathway was transferred to darkness while the analyzed cell area remained in dim background light, the amplitude of cyclosis-mediated F' changes dropped sharply and then recovered within 5-10 min. The suppression of long-distance signaling indicates temporal depletion of transmitted metabolites in the streaming cytoplasm. The return to overall background illumination induced an exceptionally large F' response to the first local light pulse admitted to a remote cell region. This indicates the appearance of excess reductants in the streaming cytoplasm at a certain stage of photosynthetic induction. The results suggest highly dynamic exchange of metabolites between stationary chloroplasts lining the microfluidic pathway and the streaming cytoplasm upon light-dark and dark-light transitions. Evidence is obtained that slow stages of chlorophyll fluorescence induction in algae with rapid cytoplasmic streaming directly depend on cyclosis-mediated long-distance delivery of metabolites produced far beyond the analyzed cell area.
叶绿体中还原力向细胞质的输出有助于平衡 NADPH/ATP 比值,这对 CO2 同化是最佳的。 轮藻中的细胞质快速流动将输出的代谢物向下游输送到阴影中的质体,在那里包膜转运体可能根据浓度梯度的方向运作,以导入还原力。 在分析区域的叶绿体中,还原当量的输入会短暂增加由光系统 II 受体 Q 的氧化还原状态控制的脉冲调制叶绿素荧光 F'。 当微流通道转移到黑暗中,而分析的细胞区域仍然处于昏暗的背景光下时,环流转导的 F'变化幅度急剧下降,然后在 5-10 分钟内恢复。 长距离信号传递的抑制表明在流动的细胞质中传输代谢物的时间耗尽。 恢复到整体背景光照会诱导第一个局部光脉冲进入远程细胞区域时产生异常大的 F'响应。 这表明在光合作用诱导的某个阶段,流动细胞质中出现了过量的还原剂。 结果表明,在光暗和暗光转换过程中,静止的叶绿体与流动的细胞质之间的代谢物交换非常活跃。 有证据表明,具有快速细胞质流动的藻类中叶绿素荧光诱导的缓慢阶段直接取决于环流转导的远距离输送,这些代谢物是在远离分析细胞区域的地方产生的。