Yang Yujia, Kim Chung-Soo, Hobbs Richard G, Keathley Phillip D, Berggren Karl K
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
Ultramicroscopy. 2020 Oct;217:113053. doi: 10.1016/j.ultramic.2020.113053. Epub 2020 Jun 25.
Electron beams can acquire designed phase modulations by passing through nanostructured material phase plates. These phase modulations enable electron wavefront shaping and benefit electron microscopy, spectroscopy, lithography, and interferometry. However, in the fabrication of electron phase plates, the typically used focused-ion-beam-milling method limits the fabrication throughput and hence the active area of the phase plates. Here, we fabricated large-area electron phase plates with electron-beam lithography and reactive-ion-etching. The phase plates are characterized by electron diffraction in transmission electron microscopes with various electron energies, as well as diffractive imaging in a scanning electron microscope. We found the phase plates could produce a null in the center of the bright-field based on coherent interference of diffractive beams. Our work adds capabilities to the fabrication of electron phase plates. The nullification of the direct beam and the tunable diffraction efficiency demonstrated here also paves the way towards novel dark-field electron-microscopy techniques.
电子束通过纳米结构材料相位板时可获得设计好的相位调制。这些相位调制能够实现电子波前整形,并有利于电子显微镜、光谱学、光刻和干涉测量。然而,在电子相位板的制造过程中,通常使用的聚焦离子束铣削方法限制了制造通量,进而限制了相位板的有效面积。在此,我们利用电子束光刻和反应离子蚀刻制造了大面积电子相位板。这些相位板通过在具有不同电子能量的透射电子显微镜中进行电子衍射以及在扫描电子显微镜中进行衍射成像来表征。我们发现,基于衍射束的相干干涉,相位板可在明场中心产生一个零值。我们的工作为电子相位板的制造增添了能力。此处展示的直射束归零和可调衍射效率也为新型暗场电子显微镜技术铺平了道路。