Suppr超能文献

提高气体在纳米孔中的溶解度:基于经典密度泛函理论和机器学习的联合研究

Enhancing Gas Solubility in Nanopores: A Combined Study Using Classical Density Functional Theory and Machine Learning.

作者信息

Qiao Chongzhi, Yu Xiaochen, Song Xianyu, Zhao Teng, Xu Xiaofei, Zhao Shuangliang, Gubbins Keith E

机构信息

State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.

出版信息

Langmuir. 2020 Jul 28;36(29):8527-8536. doi: 10.1021/acs.langmuir.0c01160. Epub 2020 Jul 14.

Abstract

Geometrical confinement has a large impact on gas solubilities in nanoscale pores. This phenomenon is closely associated with heterogeneous catalysis, shale gas extraction, phase separation, etc. Whereas several experimental and theoretical studies have been conducted that provide meaningful insights into the over-solubility and under-solubility of different gases in confined solvents, the microscopic mechanism for regulating the gas solubility remains unclear. Here, we report a hybrid theoretical study for unraveling the regulation mechanism by combining classical density functional theory (CDFT) with machine learning (ML). Specifically, CDFT is employed to predict the solubility of argon in various solvents confined in nanopores of different types and pore widths, and these case studies then supply a valid training set to ML for further investigation. Finally, the dominant parameters that affect the gas solubility are identified, and a criterion is obtained to determine whether a confined gas-solvent system is enhance-beneficial or reduce-beneficial. Our findings provide theoretical guidance for predicting and regulating gas solubilities in nanopores. In addition, the hybrid method proposed in this work sets up a feasible platform for investigating complex interfacial systems with multiple controlling parameters.

摘要

几何限制对纳米级孔隙中气体的溶解度有很大影响。这种现象与多相催化、页岩气开采、相分离等密切相关。尽管已经进行了一些实验和理论研究,对不同气体在受限溶剂中的过溶解度和欠溶解度提供了有意义的见解,但调节气体溶解度的微观机制仍不清楚。在此,我们报告一项混合理论研究,通过将经典密度泛函理论(CDFT)与机器学习(ML)相结合来揭示调节机制。具体而言,采用CDFT预测氩气在不同类型和孔径的纳米孔中受限的各种溶剂中的溶解度,然后这些案例研究为ML提供一个有效的训练集以供进一步研究。最后,确定了影响气体溶解度的主要参数,并获得了一个标准来确定受限气体-溶剂系统是增强有益还是降低有益。我们的研究结果为预测和调节纳米孔中的气体溶解度提供了理论指导。此外,本文提出的混合方法为研究具有多个控制参数的复杂界面系统建立了一个可行的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验