Biological Sciences, Boise State University, Boise, Idaho, 83725, USA.
Center for Global Discovery and Conservation Science, Arizona State University, Hilo, Hawaii, 96720, USA.
Ecol Appl. 2021 Jan;31(1):e02208. doi: 10.1002/eap.2208. Epub 2020 Oct 5.
Forecasting rates of forest succession at landscape scales will aid global efforts to restore tree cover to millions of hectares of degraded land. While optical satellite remote sensing can detect regional land cover change, quantifying forest structural change is challenging. We developed a state-space modeling framework that applies Landsat satellite data to estimate variability in rates of natural regeneration between sites in a tropical landscape. Our models work by disentangling measurement error in Landsat-derived spectral reflectance from process error related to successional variability. We applied our modeling framework to rank rates of forest succession between 10 naturally regenerating sites in Southwestern Panama from about 2001 to 2015 and tested how different models for measurement error impacted forecast accuracy, ecological inference, and rankings of successional rates between sites. We achieved the greatest increase in forecasting accuracy by adding intra-annual phenological variation to a model based on Landsat-derived normalized difference vegetation index (NDVI). The best-performing model accounted for inter- and intra-annual noise in spectral reflectance and translated NDVI to canopy height via Landsat-lidar fusion. Modeling forest succession as a function of canopy height rather than NDVI also resulted in more realistic estimates of forest state during early succession, including greater confidence in rank order of successional rates between sites. These results establish the viability of state-space models to quantify ecological dynamics from time series of space-borne imagery. State-space models also provide a statistical approach well-suited to fusing high-resolution data, such as airborne lidar, with lower-resolution data that provides better temporal and spatial coverage, such as the Landsat satellite record. Monitoring forest succession using satellite imagery could play a key role in achieving global restoration targets, including identifying sites that will regain tree cover with minimal intervention.
预测景观尺度上的森林演替速率将有助于全球努力为数百万公顷退化土地恢复树木覆盖。虽然光学卫星遥感可以检测区域土地覆盖变化,但量化森林结构变化具有挑战性。我们开发了一种状态空间建模框架,该框架应用 Landsat 卫星数据来估计热带景观中不同地点之间自然再生速率的可变性。我们的模型通过将 Landsat 衍生的光谱反射率中的测量误差与与演替可变性相关的过程误差分离开来工作。我们应用我们的建模框架对 2001 年至 2015 年期间巴拿马西南部 10 个自然再生地点之间的森林演替速率进行排名,并测试了不同的测量误差模型如何影响预测精度、生态推断和地点之间演替速率的排名。我们通过在基于 Landsat 衍生归一化差异植被指数 (NDVI) 的模型中添加年内物候变化,最大程度地提高了预测精度。表现最好的模型考虑了光谱反射率中的年际和年内噪声,并通过 Landsat-激光雷达融合将 NDVI 转换为冠层高度。将森林演替建模为冠层高度的函数,而不是 NDVI,也可以对早期演替期间的森林状态进行更现实的估计,包括对地点之间演替速率排名的信心更大。这些结果确立了状态空间模型从星载图像时间序列中量化生态动态的可行性。状态空间模型还提供了一种统计方法,非常适合融合高分辨率数据,例如机载激光雷达,以及提供更好的时间和空间覆盖的低分辨率数据,例如 Landsat 卫星记录。使用卫星图像监测森林演替可以在实现全球恢复目标方面发挥关键作用,包括确定需要最小干预即可恢复树木覆盖的地点。