Jang Seongon, Ka Dongwon, Jung Hyunsook, Kim Min-Kun, Jung Heesoo, Jin Youngho
4th R&D Institute-6th Directorate Agency for Defense Development, Daejeon 34186, Korea.
Materials (Basel). 2020 Jul 1;13(13):2954. doi: 10.3390/ma13132954.
Zirconium hydroxide, Zr(OH) is known to be highly effective for the degradation of chemical nerve agents. Due to the strong interaction force between Zr(OH) and the adsorbed water, however, Zr(OH) rapidly loses its activity for nerve agents under high-humidity environments, limiting real-world applications. Here, we report a nanocomposite material of Zr(OH) and graphene oxide (GO) which showed enhanced stability in humid environments. Zr(OH)/GO nanocomposite was prepared via a dropwise method, resulting in a well-dispersed and embedded GO in Zr(OH) nanocomposite. The nitrogen (N) isotherm analysis showed that the pore structure of Zr(OH)/GO nanocomposite is heterogeneous, and its meso-porosity increased from 0.050 to 0.251 cm/g, compared with pristine Zr(OH) prepared. Notably, the composite material showed a better performance for nerve agent soman (GD) degradation hydrolysis under high-humidity air conditions (80% relative humidity) and even in aqueous solution. The soman (GD) degradation by the nanocomposite follows the catalytic reaction with a first-order half-life of 60 min. Water adsorption isotherm analysis and diffuse reflectance infrared Fourier transform (DRIFT) spectra provide direct evidence that the interaction between Zr(OH) and the adsorbed water is reduced in Zr(OH)/GO nanocomposite, indicating that the active sites of Zr(OH) for the soman (GD) degradation, such as surface hydroxyl groups are almost available even in high-humidity environments.
氢氧化锆(Zr(OH))已知对化学神经毒剂的降解非常有效。然而,由于Zr(OH)与吸附水之间的强相互作用力,Zr(OH)在高湿度环境下会迅速失去对神经毒剂的活性,限制了其实际应用。在此,我们报道了一种Zr(OH)与氧化石墨烯(GO)的纳米复合材料,该材料在潮湿环境中表现出增强的稳定性。Zr(OH)/GO纳米复合材料通过滴加方法制备,使得GO在Zr(OH)纳米复合材料中分散良好且嵌入其中。氮(N)等温线分析表明,Zr(OH)/GO纳米复合材料的孔结构是不均匀的,与制备的原始Zr(OH)相比,其介孔率从0.050增加到0.251 cm/g。值得注意的是,该复合材料在高湿度空气条件(相对湿度80%)甚至在水溶液中对神经毒剂梭曼(GD)的降解水解表现出更好的性能。纳米复合材料对梭曼(GD)的降解遵循催化反应,一级半衰期为60分钟。水吸附等温线分析和漫反射红外傅里叶变换(DRIFT)光谱提供了直接证据,表明在Zr(OH)/GO纳米复合材料中Zr(OH)与吸附水之间的相互作用减弱,这表明即使在高湿度环境下,Zr(OH)用于梭曼(GD)降解的活性位点,如表面羟基几乎仍然可用。