Talataisong Wanvisa, Gorecki Jon, Ismaeel Rand, Beresna Martynas, Schwendemann Daniel, Apostolopoulos Vasilis, Brambilla Gilberto
Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.
National Oceanography Centre, Southampton, SO14 3ZH, UK.
Sci Rep. 2020 Jul 6;10(1):11045. doi: 10.1038/s41598-020-68079-y.
Terahertz (THz) technology has witnessed a significant growth in a wide range of applications, including spectroscopy, bio-medical sensing, astronomical and space detection, THz tomography, and non-invasive imaging. Current THz microstructured fibers show a complex fabrication process and their flexibility is severely restricted by the relatively large cross-sections, which turn them into rigid rods. In this paper, we demonstrate a simple and novel method to fabricate low-cost THz microstructured fibers. A cyclic olefin copolymer (TOPAS) suspended-core fiber guiding in the THz is extruded from a structured 3D printer nozzle and directly drawn in a single step process. Spectrograms of broadband THz pulses propagated through different lengths of fiber clearly indicate guidance in the fiber core. Cladding mode stripping allow for the identification of the single mode in the spectrograms and the determination of the average propagation loss (~ 0.11 dB/mm) in the 0.5-1 THz frequency range. This work points towards single step manufacturing of microstructured fibers using a wide variety of materials and geometries using a 3D printer platform.
太赫兹(THz)技术在包括光谱学、生物医学传感、天文和空间探测、太赫兹断层扫描以及非侵入性成像等广泛应用领域取得了显著发展。当前的太赫兹微结构光纤制造过程复杂,且其柔韧性因相对较大的横截面而受到严重限制,这使得它们变成了刚性棒状。在本文中,我们展示了一种简单且新颖的方法来制造低成本的太赫兹微结构光纤。一种在太赫兹波段具有悬浮芯的环烯烃共聚物(TOPAS)光纤从结构化的3D打印机喷嘴挤出,并通过单步工艺直接拉制而成。通过不同长度光纤传播的宽带太赫兹脉冲的光谱图清楚地表明了在光纤芯中的导波情况。包层模去除使得能够在光谱图中识别单模,并确定在0.5 - 1太赫兹频率范围内的平均传播损耗(约0.11 dB/mm)。这项工作为利用3D打印机平台使用各种材料和几何形状进行微结构光纤的单步制造指明了方向。