Department of Biology, ETH Zürich, Zurich, Switzerland.
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
Nat Plants. 2020 Jul;6(7):789-799. doi: 10.1038/s41477-020-0687-2. Epub 2020 Jul 6.
In RNA interference (RNAi), the RNase III Dicer processes long double-stranded RNA (dsRNA) into short interfering RNA (siRNA), which, when loaded into ARGONAUTE (AGO) family proteins, execute gene silencing. Remarkably, RNAi can act non-cell autonomously: it is graft transmissible, and plasmodesmata-associated proteins modulate its cell-to-cell spread. Nonetheless, the molecular mechanisms involved remain ill defined, probably reflecting a disparity of experimental settings. Among other caveats, these almost invariably cause artificially enhanced movement via transitivity, whereby primary RNAi-target transcripts are converted into further dsRNA sources of secondary siRNA. Whether siRNA mobility naturally requires transitivity and whether it entails the same or distinct signals for cell-to-cell versus long-distance movement remains unclear, as does the identity of the mobile signalling molecules themselves. Movement of long single-stranded RNA, dsRNA, free/AGO-bound secondary siRNA or primary siRNA have all been advocated; however, an entity necessary and sufficient for all known manifestations of plant mobile RNAi remains to be ascertained. Here, we show that the same primary RNAi signal endows both vasculature-to-epidermis and long-distance silencing movement from three distinct RNAi sources. The mobile entities are AGO-free primary siRNA duplexes spreading length and sequence independently. However, their movement is accompanied by selective siRNA depletion reflecting the AGO repertoires of traversed cell types. Coupling movement with this AGO-mediated consumption process creates qualitatively distinct silencing territories, potentially enabling unlimited spatial gene regulation patterns well beyond those granted by mere gradients.
在 RNA 干扰 (RNAi) 中,RNase III Dicer 将长双链 RNA (dsRNA) 加工成短干扰 RNA (siRNA),后者载入 ARGONAUTE (AGO) 家族蛋白后执行基因沉默。值得注意的是,RNAi 可以非自主细胞发挥作用:它可被嫁接传播,质膜附属蛋白调节其细胞间传播。然而,涉及的分子机制仍未明确,可能反映了实验条件的差异。除其他限制因素外,这些条件几乎总是通过转导导致人为增强的运动,从而将初级 RNAi 靶转录本转化为进一步的 dsRNA 次级 siRNA 来源。siRNA 的移动是否自然需要转导,以及它是否需要与细胞间和长距离运动相同或不同的信号,以及移动信号分子本身的身份,这些都不清楚。长单链 RNA、dsRNA、游离/AGO 结合的次级 siRNA 或初级 siRNA 的运动都得到了提倡;然而,对于植物移动 RNAi 的所有已知表现形式都需要确定一种必要且充分的实体。在这里,我们表明,相同的初级 RNAi 信号赋予了来自三个不同 RNAi 来源的血管到表皮和长距离沉默运动。移动实体是 AGO 自由的初级 siRNA 双链体,它们独立地扩散长度和序列。然而,它们的运动伴随着选择性 siRNA 耗竭,反映了穿过的细胞类型的 AGO 库。将运动与这种 AGO 介导的消耗过程结合起来,创造了定性不同的沉默区域,可能能够实现超越仅仅是梯度的无限空间基因调控模式。