Jay Florence, Brioudes Florian, Novaković Lazar, Imboden André, Benitez-Alfonso Yoselin, Voinnet Olivier
Department of Biology, Swiss Federal Institute of Technology (ETH-Zürich), Zürich, 8092, Switzerland.
School of Biology, Centre for Plant Sciences, and Astbury Centre, University of Leeds, Leeds, LS2 9JT, UK.
Plant J. 2025 May;122(3):e70194. doi: 10.1111/tpj.70194.
Some silencing small (s)RNAs, comprising micro (mi)RNAs and small-interfering (si)RNAs, move between plant cells to orchestrate gene expression and defense. Besides possible redundancy or embryo lethality, a prevalent challenge in genetic studies of mobile silencing is to discriminate bona fide alterations to sRNA movement from impaired cell-autonomous sRNA activity within silencing-recipient cells. Without such clarifications, cell-to-cell mobility factors are yet to be unequivocally identified. Consequently, known properties of sRNA movement, including contextuality and directionality, remain poorly explained. Circumstantial evidence and synthetic biology pinpoint plasmodesmata (PDs) - the pores traversing plant cell walls (CWs) - as the likely channels involved. Yet, how plants control the number of primary and secondary PDs developing respectively before and after CW formation remains largely unknown. Here, we address these intertwined issues in Arabidopsis using a forward screen for compromised epidermis-to-mesophyll movement of an artificial (a)miRNA. We identify a pectin acetyl-transferase mutation that, we demonstrate, reduces amiRNA physical trafficking but also impedes siRNA, GFP, and viral movement by decreasing the frequency of leaf secondary PDs. sRNA movement at leaf interfaces involving primary PDs remains unaffected, however, as does miRNA and GFP cell-to-cell mobility in roots, hinting at how movement's contextuality and directionality might be achieved. We also show that reducing de-esterified pectin depolymerization decreases leaves' symplasmic connectivity, whereas defective pectin biogenesis increases PD number. Combining genetics with antibody-based pectin probing and atomic force microscopy helps delineate a mechanistically coherent framework whereby pectin esterification and/or abundance impact CW loosening, a process required for CW extension during which secondary PDs form to enable macromolecular trafficking.
一些沉默小(s)RNA,包括微小(mi)RNA和小干扰(si)RNA,在植物细胞间移动以协调基因表达和防御。除了可能存在的冗余或胚胎致死性外,移动沉默基因研究中的一个普遍挑战是区分sRNA移动的真正改变与沉默受体细胞内受损的细胞自主sRNA活性。没有这样的明确区分,细胞间移动因子尚未得到明确鉴定。因此,sRNA移动的已知特性,包括背景相关性和方向性,仍然难以解释。间接证据和合成生物学指出胞间连丝(PDs)——穿过植物细胞壁(CWs)的孔隙——可能是相关通道。然而,植物如何分别控制CW形成之前和之后发育的初级和次级PDs的数量在很大程度上仍然未知。在这里,我们利用对人工(a)miRNA从表皮到叶肉移动受损的正向筛选,在拟南芥中解决这些相互交织的问题。我们鉴定出一种果胶乙酰转移酶突变,我们证明它降低了amiRNA的物理运输,但也通过降低叶片次级PDs的频率阻碍了siRNA、绿色荧光蛋白(GFP)和病毒的移动。然而,涉及初级PDs的叶片界面处的sRNA移动不受影响,根中的miRNA和GFP细胞间移动也是如此,这暗示了移动的背景相关性和方向性可能是如何实现的。我们还表明,减少去酯化果胶的解聚会降低叶片的共质体连通性,而果胶生物合成缺陷会增加PDs数量。将遗传学与基于抗体的果胶探测和原子力显微镜相结合,有助于勾勒出一个机制连贯的框架,据此果胶酯化和/或丰度影响CW松弛,这是CW延伸过程中所需的一个过程,在此期间形成次级PDs以实现大分子运输。