Suppr超能文献

一石二鸟:芽殖酵母 Mps1 通过磷酸化单个动粒蛋白控制染色体分离和纺锤体组装检查点。

Killing two birds with one stone: how budding yeast Mps1 controls chromosome segregation and spindle assembly checkpoint through phosphorylation of a single kinetochore protein.

机构信息

CRBM, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier, France.

出版信息

Curr Genet. 2020 Dec;66(6):1037-1044. doi: 10.1007/s00294-020-01091-x. Epub 2020 Jul 6.

Abstract

During mitosis, the identical sister chromatids of each chromosome must attach through their kinetochores to microtubules emanating from opposite spindle poles. This process, referred to as chromosome biorientation, is essential for equal partitioning of the genetic information to the two daughter cells. Defects in chromosome biorientation can give rise to aneuploidy, a hallmark of cancer and genetic diseases. A conserved surveillance mechanism called spindle assembly checkpoint (SAC) prevents the onset of anaphase until biorientation is attained. Key to chromosome biorientation is an error correction mechanism that allows kinetochores to establish proper bipolar attachments by disengaging faulty kinetochore-microtubule connections. Error correction relies on the Aurora B and Mps1 kinases that also promote SAC signaling, raising the possibility that they are part of a single sensory device responding to improper attachments and concomitantly controlling both their disengagement and a temporary mitotic arrest. In budding yeast, Aurora B and Mps1 promote error correction independently from one another, but while the substrates of Aurora B in this process are at least partially known, the mechanism underlying the involvement of Mps1 in the error correction pathway is unknown. Through the characterization of a novel mps1 mutant and an unbiased genetic screen for extragenic suppressors, we recently gained evidence that a common mechanism based on Mps1-dependent phosphorylation of the Knl1/Spc105 kinetochore scaffold and subsequent recruitment of the Bub1 kinase is critical for the function of Mps1 in chromosome biorientation as well as for SAC activation (Benzi et al. EMBO Rep, 2020).

摘要

在有丝分裂过程中,每条染色体的同源姐妹染色单体必须通过其动粒连接到来自纺锤体两极的微管。这个过程被称为染色体双定向,对于将遗传信息均等分配到两个子细胞中至关重要。染色体双定向的缺陷会导致非整倍体,这是非典型性癌症和遗传疾病的一个标志。一种称为纺锤体组装检查点(SAC)的保守监测机制可防止后期开始,直到达到双定向。染色体双定向的关键是一种错误修正机制,该机制允许动粒通过脱离有缺陷的动粒-微管连接来建立适当的双极附着。错误修正依赖于 Aurora B 和 Mps1 激酶,它们也促进 SAC 信号转导,这表明它们是响应不正确附着的单一感觉装置的一部分,同时控制其脱离和暂时的有丝分裂停滞。在芽殖酵母中,Aurora B 和 Mps1 彼此独立地促进错误修正,但虽然 Aurora B 在该过程中的底物至少部分已知,但 Mps1 参与错误修正途径的机制尚不清楚。通过对一种新型 mps1 突变体的特征描述和对附加基因抑制子的无偏遗传筛选,我们最近获得了证据,表明一种基于 Mps1 依赖性磷酸化 Knl1/Spc105 动粒支架和随后募集 Bub1 激酶的共同机制对于 Mps1 在染色体双定向以及 SAC 激活中的功能至关重要(Benzi 等人,《EMBO 报告》,2020 年)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验