Lan Kun, Wang Ruicong, Wei Qiulong, Wang Yanxiang, Hong Anh, Feng Pingyun, Zhao Dongyuan
Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China.
Department of Chemistry, University of California, Riverside, CA, 92521, USA.
Angew Chem Int Ed Engl. 2020 Sep 28;59(40):17676-17683. doi: 10.1002/anie.202007859. Epub 2020 Aug 12.
By introducing a compatible reducing agent (2-ethylimidazole) into a mono-micelle assembly process, we present a type of ordered mesoporous TiO microspheres that combines radially aligned mesostructure with Ti defects in mesoporous frameworks. Such reductant acts as a building block of mesostructured frameworks and reduces Ti in situ to generate defects during calcination, giving rise to the coexistence of bulk Ti defects and an ordered mesostructure. The mesoporous TiO has both excellent mesoporosity (a high surface area of 106 m g , a mean pore size of 18.4 nm) and stable defects with an extended photoresponse. Such integration of unique mesoscopic architecture and atomic vacancies provide both effective mass transportation and enhanced light utilization, leading to a remarkable increase in H generation rate. A maximum H evolution rate of 19.8 mmol g h can be achieved, along with outstanding stability under solar light.
通过在单胶束组装过程中引入一种兼容的还原剂(2-乙基咪唑),我们制备出了一种有序介孔TiO微球,其将径向排列的介观结构与介孔框架中的Ti缺陷相结合。这种还原剂作为介观结构框架的构建单元,在煅烧过程中原位还原Ti以产生缺陷,从而导致大量Ti缺陷与有序介观结构共存。该介孔TiO具有优异的介孔率(高比表面积为106 m²/g,平均孔径为18.4 nm)以及具有扩展光响应的稳定缺陷。这种独特介观结构与原子空位的整合既提供了有效的质量传输又增强了光利用,从而导致H生成速率显著提高。在太阳光下,H₂的最大析出速率可达19.8 mmol g⁻¹ h⁻¹,同时具有出色的稳定性。