Kaeffer Nicolas, Mance Deni, Copéret Christophe
ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland.
Current address: Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany.
Angew Chem Int Ed Engl. 2020 Nov 2;59(45):19999-20007. doi: 10.1002/anie.202006209. Epub 2020 Sep 1.
Supported metal nanoparticles are a very large class of heterogeneous catalysts. While detailed structure-activity relationships require a molecular-level description of the interactions between the metal surfaces and ligands/substrates, this description is rarely accessible. Thus, most insights are derived from models based on single crystals. With the goal to understand alkyne semihydrogenation catalysts based on Cu functionalized with N-heterocyclic carbene (NHC), we cross this gap by investigating NHC-stabilized molecular complexes, supported single sites and nanoparticles by solid-state NMR combined with computations. We show that in silica-supported Cu single sites, Cu retains the coordination geometry observed in molecular compounds, while, for supported Cu nanoparticles, which are active and selective for the semihydrogenation of alkynes, NHC binding is favored at Cu adatoms atop of copper surface, thus paralleling conclusions of surface science studies on single crystals.
负载型金属纳米颗粒是一大类多相催化剂。虽然详细的结构-活性关系需要对金属表面与配体/底物之间的相互作用进行分子水平的描述,但这种描述很少能够获得。因此,大多数见解来自基于单晶的模型。为了理解基于用N-杂环卡宾(NHC)功能化的铜的炔烃半加氢催化剂,我们通过结合计算的固态核磁共振研究NHC稳定的分子配合物、负载的单原子位点和纳米颗粒来跨越这一差距。我们表明,在二氧化硅负载的铜单原子位点中,铜保留了在分子化合物中观察到的配位几何结构,而对于负载的铜纳米颗粒,其对炔烃半加氢具有活性和选择性,NHC在铜表面顶部的铜吸附原子上的结合更有利,这与单晶表面科学研究的结论相似。