Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
Life Sci. 2020 Sep 15;257:118052. doi: 10.1016/j.lfs.2020.118052. Epub 2020 Jul 4.
Granulocyte colony-stimulating factor (G-CSF) is a cytokine that induces proliferation and differentiation of hematopoietic precursor cells and activation of mature neutrophils. G-CSF is overexpressed in several malignant tumors and blocking its binding to the receptor can lead to significant decrease in tumor growth, vascularization and metastasis. Furthermore, targeting G-CSF receptor has shown therapeutic benefit in other diseases such as rheumatoid arthritis, progressive neurodegenerative disorder and uveitis. Camelid single-chain antibodies (nanobodies) have exceptional properties making them appropriate for tumor imaging and therapeutic application. In this study we aim to use the rational design approach to engineer a previously described G-CSF-R targeting nanobody (VHH1), to improve its affinity toward G-CSF-R.
We redesigned the complementary determining region 3 (CDR3) domain of the VHH1 nanobody to mimic G-CSF interaction to its receptor and developed five new engineered nanobodies. Binding affinity of the engineered nanobodies was evaluated by ELISA (Enzyme-linked immunosorbent assay) on NFS60 cells.
Enzyme-linked immunosorbent assay (ELISA) confirmed the specificity of the engineered nanobodies and ELISA-based determination of affinity revealed that two of the engineered nanobodies (1c and 5a) bind to G-CSF-R on the surface of NFS60 cells in a dose-dependent manner and with a higher potency compared to the parental nanobody.
Additional studies are required to better characterize these nanobodies and assess their interaction with G-CSF-R in vitro and in vivo. These newly developed nanobodies could be beneficial in tumor imaging and therapy and make a basis for development of additional engineered nanobodies.
粒细胞集落刺激因子(G-CSF)是一种细胞因子,可诱导造血前体细胞的增殖和分化,并激活成熟的中性粒细胞。G-CSF 在几种恶性肿瘤中过度表达,阻断其与受体的结合可导致肿瘤生长、血管生成和转移的显著减少。此外,靶向 G-CSF 受体已在其他疾病(如类风湿关节炎、进行性神经退行性疾病和葡萄膜炎)中显示出治疗益处。骆驼科单链抗体(纳米抗体)具有独特的性质,使其适合用于肿瘤成像和治疗应用。在这项研究中,我们旨在使用合理的设计方法来设计以前描述的靶向 G-CSF-R 的纳米抗体(VHH1),以提高其对 G-CSF-R 的亲和力。
我们重新设计了 VHH1 纳米抗体的互补决定区 3(CDR3)结构域,以模拟 G-CSF 与其受体的相互作用,并开发了五种新的工程纳米抗体。通过在 NFS60 细胞上进行 ELISA(酶联免疫吸附试验)评估工程纳米抗体的结合亲和力。
ELISA 证实了工程纳米抗体的特异性,ELISA 基于亲和力的测定表明,两种工程纳米抗体(1c 和 5a)以剂量依赖性方式与 NFS60 细胞表面的 G-CSF-R 结合,并且与亲本纳米抗体相比具有更高的效力。
需要进一步的研究来更好地表征这些纳米抗体,并评估它们在体外和体内与 G-CSF-R 的相互作用。这些新开发的纳米抗体可能有益于肿瘤成像和治疗,并为开发其他工程纳米抗体奠定基础。