Guerrero Jose Alejandro, Silva Raquel Souto, de Abreu Lima Izabella Lucas, Rodrigues Bianca Cristina Duffles, Barrioni Breno Rocha, Amaral Flávio Almeida, Tabanez André Petenuci, Garlet Gustavo Pompermaier, Alvarado Diego Alexander Garzon, Silva Tarcília Aparecida, de Las Casas Estevam Barbosa, Macari Soraia
Institute of Biotechnology, Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, National University of Colombia, Bogotá, Colombia.
Departament of Social and Preventive Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
J Biomech. 2020 Jul 17;108:109880. doi: 10.1016/j.jbiomech.2020.109880. Epub 2020 Jun 13.
The aim of this study was to analyze the effect of rapid maxillary expansion (RME) on hard tissues. Opening loops bonded to the first and second maxillary molars on both sides were used to apply distracting forces of 0.28 N, 0.42 N and 0.56 N at the midpalatal suture for 7 and 14 days. Microcomputed tomography (MicroCT), histomorphometry and quantitative polymerase chain reaction (qPCR) analysis were performed to evaluate RME effectiveness, midpalatal suture remodeling, cell counting of osteoblasts, osteoclasts and chondrocytes and the expression of bone remodeling markers, respectively. All forces at the two different time points resulted in similar RME and enhanced of bone remodeling. Accordingly, increased number of osteoblasts and reduced chondrocytes counting and no difference in osteoclasts were seen after all RME protocols. RME yielded increased expression of bone remodeling markers as osteocalcin (Ocn), dentin matrix acidic phosphoprotein-1 (Dmp1), runt-related transcription factor 2 (Runx2), collagen type I Alpha 1 (Col1a1), alkaline phosphatase (ALP), receptor activator of nuclear factor kappa B (RANK), receptor activator of nuclear factor kappa B ligand (Rankl), osteoprotegerin (Opg), cathepsin K (Ctsk), matrix metalloproteinases 9 and 13 (Mmp9 and 13), transforming growth fator beta 1, 2 and 3 (Tgfb 1, Tgfb 2 and Tgfb3), bone morphogenetic protein 2 (Bmp-2), sclerostin (Sost), beta-catenin-like protein 1 (Ctnnbl) and Wnt signaling pathways 3, 3a and 5a (Wnt 3, Wnt 3a and Wnt 5a). These findings characterize the cellular changes and potential molecular pathways involved in RME, proving the reliability of this protocol as a model for mechanical-induced bone remodeling.
本研究的目的是分析快速上颌扩弓(RME)对硬组织的影响。在两侧上颌第一和第二磨牙上粘结开口环,以在腭中缝处施加0.28 N、0.42 N和0.56 N的牵张力,持续7天和14天。分别进行微型计算机断层扫描(MicroCT)、组织形态计量学和定量聚合酶链反应(qPCR)分析,以评估RME的有效性、腭中缝重塑、成骨细胞、破骨细胞和软骨细胞的细胞计数以及骨重塑标志物的表达。在两个不同时间点施加的所有力均导致相似的RME并增强了骨重塑。因此,在所有RME方案后,成骨细胞数量增加,软骨细胞计数减少,破骨细胞无差异。RME使骨重塑标志物如骨钙素(Ocn)、牙本质基质酸性磷酸蛋白-1(Dmp1)、 runt相关转录因子2(Runx2)、I型胶原α1(Col1a1)、碱性磷酸酶(ALP)、核因子κB受体激活剂(RANK)、核因子κB受体激活剂配体(Rankl)、骨保护素(Opg)、组织蛋白酶K(Ctsk)、基质金属蛋白酶9和13(Mmp9和13)、转化生长因子β1、2和3(Tgfb 1、Tgfb 2和Tgfb3)、骨形态发生蛋白2(Bmp-2)、硬化蛋白(Sost)、β-连环蛋白样蛋白1(Ctnnbl)以及Wnt信号通路3、3a和5a(Wnt 3、Wnt 3a和Wnt 5a)的表达增加。这些发现描述了RME过程中涉及的细胞变化和潜在分子途径,证明了该方案作为机械诱导骨重塑模型的可靠性。