Suppr超能文献

分析特定主体的抓握模式。

Analysis of subject specific grasping patterns.

机构信息

Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.

Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.

出版信息

PLoS One. 2020 Jul 8;15(7):e0234969. doi: 10.1371/journal.pone.0234969. eCollection 2020.

Abstract

Existing haptic feedback devices are limited in their capabilities and are often cumbersome and heavy. In addition, these devices are generic and do not adapt to the users' grasping behavior. Potentially, a human-oriented design process could generate an improved design. While current research done on human grasping was aimed at finding common properties within the research population, we investigated the dynamic patterns that make human grasping behavior distinct rather than generalized, i.e. subject specific. Experiments were conducted on 31 subjects who performed grasping tasks on five different objects. The kinematics and kinetics parameters were measured using a motion capture system and force sensors. The collected data was processed through a pipeline of dimensionality reduction and clustering algorithms. Using finger joint angles and reaction forces as our features, we were able to classify these tasks with over 95% success. In addition, we examined the effects of the objects' mechanical properties on those patterns and the significance of the different features for the differentiation. Our results suggest that grasping patterns are, indeed, subject-specific; this, in turn, could suggest that a device capable of providing personalized feedback can improve the user experience and, in turn, increase the usability in different applications. This paper explores an undiscussed aspect of human dynamic patterns. Furthermore, the collected data offer a valuable dataset of human grasping behavior, containing 1083 grasp instances with both kinetics and kinematics data.

摘要

现有的触觉反馈设备在功能上存在局限性,而且通常体积庞大、笨重。此外,这些设备是通用的,无法适应用户的抓握行为。潜在地,以人为中心的设计过程可以生成改进的设计。虽然当前关于人类抓握的研究旨在寻找研究人群中的共同特性,但我们研究了使人类抓握行为具有独特性而不是一般性的动态模式,即特定于个体。我们对 31 名受试者进行了实验,他们在五个不同的物体上执行抓握任务。使用运动捕捉系统和力传感器测量运动学和动力学参数。通过降维和聚类算法的处理流水线对收集的数据进行处理。使用手指关节角度和反作用力作为我们的特征,我们能够以超过 95%的成功率对这些任务进行分类。此外,我们还研究了物体机械性能对这些模式的影响,以及不同特征对差异的重要性。我们的结果表明,抓握模式确实是特定于个体的;这反过来又表明,能够提供个性化反馈的设备可以改善用户体验,从而提高不同应用中的可用性。本文探讨了人类动态模式的一个未被探讨的方面。此外,收集的数据提供了一个有价值的人类抓握行为数据集,包含 1083 个具有动力学和运动学数据的抓握实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c769/7343174/2550449904d0/pone.0234969.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验