Suppr超能文献

添加噪声和通道注意力以改进目标跟踪。

Improving Object Tracking by Added Noise and Channel Attention.

机构信息

School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea.

Department of Computer Science, Information Technology University, Lahore 54000, Pakistan.

出版信息

Sensors (Basel). 2020 Jul 6;20(13):3780. doi: 10.3390/s20133780.

Abstract

CNN-based trackers, especially those based on Siamese networks, have recently attracted considerable attention because of their relatively good performance and low computational cost. For many Siamese trackers, learning a generic object model from a large-scale dataset is still a challenging task. In the current study, we introduce input noise as regularization in the training data to improve generalization of the learned model. We propose an Input-Regularized Channel Attentional Siamese (IRCA-Siam) tracker which exhibits improved generalization compared to the current state-of-the-art trackers. In particular, we exploit offline learning by introducing additive noise for input data augmentation to mitigate the overfitting problem. We propose feature fusion from noisy and clean input channels which improves the target localization. Channel attention integrated with our framework helps finding more useful target features resulting in further performance improvement. Our proposed IRCA-Siam enhances the discrimination of the tracker/background and improves fault tolerance and generalization. An extensive experimental evaluation on six benchmark datasets including OTB2013, OTB2015, TC128, UAV123, VOT2016 and VOT2017 demonstrate superior performance of the proposed IRCA-Siam tracker compared to the 30 existing state-of-the-art trackers.

摘要

基于 CNN 的跟踪器,特别是基于孪生网络的跟踪器,由于其相对较好的性能和低计算成本,最近引起了相当多的关注。对于许多孪生跟踪器来说,从大规模数据集学习通用的目标模型仍然是一个具有挑战性的任务。在本研究中,我们引入输入噪声作为训练数据中的正则化项,以提高学习模型的泛化能力。我们提出了一种输入正则化通道注意力孪生网络(IRCA-Siam)跟踪器,与当前最先进的跟踪器相比,该跟踪器具有更好的泛化能力。特别是,我们通过引入加性噪声对输入数据进行扩充来进行离线学习,从而减轻过拟合问题。我们提出了从噪声和干净输入通道进行特征融合的方法,从而提高了目标定位的准确性。与我们的框架集成的通道注意力有助于发现更有用的目标特征,从而进一步提高性能。我们提出的 IRCA-Siam 增强了跟踪器/背景的辨别能力,提高了容错能力和泛化能力。在包括 OTB2013、OTB2015、TC128、UAV123、VOT2016 和 VOT2017 在内的六个基准数据集上进行的广泛实验评估表明,与现有的 30 种最先进的跟踪器相比,所提出的 IRCA-Siam 跟踪器具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验