Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy.
AIDS Research Institute-IrsiCaixa, 08916 Badalona, Spain.
Viruses. 2020 Jul 6;12(7):729. doi: 10.3390/v12070729.
HIV-1 infection requires life-long treatment and with 2.1 million new infections/year, faces the challenge of an increased rate of transmitted drug-resistant mutations. Therefore, a constant and timely effort is needed to identify new HIV-1 inhibitors active against drug-resistant variants. The ribonuclease H (RNase H) activity of HIV-1 reverse transcriptase (RT) is a very promising target, but to date, still lacks an efficient inhibitor. Here, we characterize the mode of action of -(2-hydroxy-benzylidene)-3,4,5-trihydroxybenzoylhydrazone (compound ), an N-acylhydrazone derivative that inhibited viral replication (EC = 10 µM), while retaining full potency against the NNRTI-resistant double mutant K103N-Y181C virus. Time-of-addition and biochemical assays showed that compound targeted the reverse-transcription step in cell-based assays and inhibited the RT-associated RNase H function, being >20-fold less potent against the RT polymerase activity. Docking calculations revealed that compound binds within the RNase H domain in a position different from other selective RNase H inhibitors; site-directed mutagenesis studies revealed interactions with conserved amino acid within the RNase H domain, suggesting that compound can be taken as starting point to generate a new series of more potent RNase H selective inhibitors active against circulating drug-resistant variants.
HIV-1 感染需要终身治疗,每年有 210 万例新感染病例,因此面临着传播耐药突变体率增加的挑战。因此,需要不断地、及时地努力寻找新的、针对耐药变异体具有活性的 HIV-1 抑制剂。HIV-1 逆转录酶(RT)的核糖核酸酶 H(RNase H)活性是一个非常有前途的靶点,但迄今为止,仍然缺乏有效的抑制剂。在这里,我们描述了-(2-羟基-苯亚甲基)-3,4,5-三羟基苯甲酰腙(化合物)的作用模式,该化合物是一种 N-酰腙衍生物,能够抑制病毒复制(EC = 10 µM),同时对 NNRTI 耐药的双突变体 K103N-Y181C 病毒保持完全效力。添加时间和生化测定表明,化合物在基于细胞的测定中靶向逆转录步骤,并抑制 RT 相关的 RNase H 功能,对 RT 聚合酶活性的抑制作用弱 20 倍以上。对接计算表明,化合物在 RNase H 结构域内的结合位置与其他选择性 RNase H 抑制剂不同;定点突变研究揭示了与 RNase H 结构域内保守氨基酸的相互作用,表明化合物可以作为起点,生成一系列针对循环耐药变体更有效的、选择性更强的 RNase H 抑制剂。