Suppr超能文献

自驱动环形胶体

Self-propelled torus colloids.

作者信息

Wang Jiyuan, Huang Mu-Jie, Kapral Raymond

机构信息

School of Electrical and Control Engineering, Heilongjiang University of Science and Technology, Harbin 150022, People's Republic of China.

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

出版信息

J Chem Phys. 2020 Jul 7;153(1):014902. doi: 10.1063/5.0012265.

Abstract

Suspensions of chemically powered self-propelled colloidal particles are examples of active matter systems with interesting properties. While simple spherical Janus particles are often studied, it is known that geometry is important and recent experiments have shown that chemically active torus-shaped colloids behave differently from spherical colloids. In this paper, coarse-grained microscopic simulations of the dynamics of self-diffusiophoretic torus colloids are carried out in bulk solution in order to study how torus geometric factors influence their active motion. The concentration and velocity fields are key ingredients in self-diffusiophoretic propulsion, and the forms that these fields take in the colloid vicinity are shown to be strong functions of torus geometric parameters such as the torus hole size and thickness of the torus tube. This work utilizes a method where self-diffusiophoretic torus colloids with various geometric and dynamical characteristics can be built and studied in fluid media that include chemical reactions and fluid flows. The model can be used to investigate the collective properties of these colloids and their dynamics in confined systems, topics that are of general importance for applications that use colloidal motors with complex geometries.

摘要

化学驱动的自推进胶体颗粒悬浮液是具有有趣特性的活性物质系统的实例。虽然简单的球形雅努斯粒子经常被研究,但众所周知几何形状很重要,并且最近的实验表明,化学活性的环形胶体的行为与球形胶体不同。在本文中,为了研究环形几何因素如何影响自扩散电泳环形胶体的活性运动,我们在本体溶液中对其动力学进行了粗粒度微观模拟。浓度场和速度场是自扩散电泳推进的关键因素,并且这些场在胶体附近的形式显示为环形几何参数(如环形孔尺寸和环形管厚度)的强函数。这项工作采用了一种方法,通过该方法可以在包括化学反应和流体流动的流体介质中构建和研究具有各种几何和动力学特性的自扩散电泳环形胶体。该模型可用于研究这些胶体的集体性质及其在受限系统中的动力学,这些主题对于使用具有复杂几何形状的胶体马达的应用具有普遍重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验