Department of Life Science & Biotechnology, Kansai University.
J Gen Appl Microbiol. 2020 Nov 30;66(5):265-272. doi: 10.2323/jgam.2019.11.006. Epub 2020 Jul 8.
The degradation pathways in microorganisms for piperidine, a secondary amine with various applications, are not yet fully understood, especially in non-Mycobacterium species. In this study, we have identified a piperidine-degrading isolate (KU43P) from a soil sample collected in a cultivation field in Osaka, Japan, and characterized its mechanisms of piperidine degradation, thereby furthering current understanding of the process. The genome of isolate KU43P consists of a 5,869,691-bp circular chromosome with 62.67% GC content and with 5,294 predicted protein-coding genes, 77 tRNA genes, and 22 rRNA genes. 16S rRNA gene sequence analysis and average nucleotide identity analysis suggest that the isolate is a novel species of the Pseudomonas putida group in the genus Pseudomonas. The genomic region encoding the piperidine degradation pathway, designated as the pip gene cluster, was identified using transposon mutagenesis and reverse transcription polymerase chain reaction. Deletion analyses of pipA, which encodes a glutamine synthetase (GS)-like protein, and pipBa, which encodes a cytochrome P450 monooxygenase, indicate that pipA and pipBa are involved in piperidine metabolism and suggest that pipA is involved in the first step of the piperidine metabolic pathway. Escherichia coli whole cells overexpressing PipA converted piperidine and glutamate to γ-glutamylpiperidide, and crude cell extract enzyme assays of PipA showed that this reaction requires ATP and Mg. These results clearly show that pipA encodes γ-glutamylpiperidide synthetase and that piperidine is first glutamylated and then hydroxylated in the piperidine degradation pathway of Pseudomonas sp. strain KU43P. This study has filled a void in the general knowledge of the microbial degradation of amine compounds.
哌啶作为一种具有多种应用的仲胺,其在微生物中的降解途径尚不完全清楚,尤其是在非分枝杆菌物种中。在这项研究中,我们从日本大阪一个种植场的土壤样本中分离到一株能够降解哌啶的菌株(KU43P),并对其降解哌啶的机制进行了表征,从而进一步了解了这一过程。KU43P 的基因组由一个 5869691bp 的圆形染色体组成,GC 含量为 62.67%,包含 5294 个预测的蛋白编码基因、77 个 tRNA 基因和 22 个 rRNA 基因。16S rRNA 基因序列分析和平均核苷酸同一性分析表明,该菌株是假单胞菌属中假单胞菌.putida 群的一个新种。使用转座子诱变和反转录聚合酶链反应鉴定了编码哌啶降解途径的基因簇,命名为 pip 基因簇。pipA 基因(编码谷氨酰胺合成酶(GS)样蛋白)和 pipBa 基因(编码细胞色素 P450 单加氧酶)的缺失分析表明,pipA 和 pipBa 参与哌啶代谢,并表明 pipA 参与哌啶代谢途径的第一步。过表达 PipA 的大肠杆菌全细胞将哌啶和谷氨酸转化为γ-谷氨酰哌啶,并且 PipA 的粗细胞提取物酶分析表明,该反应需要 ATP 和 Mg。这些结果清楚地表明,pipA 编码γ-谷氨酰哌啶合酶,并且哌啶在 Pseudomonas sp. strain KU43P 的哌啶降解途径中首先被谷氨酸化,然后被羟基化。本研究填补了微生物降解胺类化合物的一般知识空白。