Suppr超能文献

作为投稿人的公民——给奥地利小报的读者来信(2008 - 2017年)

The Citizen as Contributor-Letters to the Editor in the Austrian Tabloid Paper (2008-2017).

作者信息

Hayek Lore, Mayrl Manuel, Russmann Uta

机构信息

Department of Political Science, University of Innsbruck, Innsbruck, Austria.

Department of Communication, FHWien der WKW University of Applied Sciences for Management & Communication, Wien, Austria.

出版信息

Journal Stud. 2020 Jun 1;21(8):1127-1145. doi: 10.1080/1461670X.2019.1702476. eCollection 2020.

Abstract

This paper addresses the subject of letters to the editor as one of the longest standing forums for public discussion and debate by ordinary citizens. To show how the voice of ordinary citizens is presented in letters to the editor during national election campaigns over a period of ten years (2008, 2013 & 2017), we are focusing on the Austrian A newspaper with an exceptionally high market share of up to 40% during the examination period, a heavy focus on the letters section with three pages per day, and a self-declared willingness to take a stance, especially during election periods. Based on a quantitative content analysis of 530 letters to the editor and 525 articles in the politics section as well as survey data from the Austrian national election study on the political positions of the readers, we find that letters to the editor in the do not reflect, but complement the articles in the politics section. The tone of the letters is more negative than that of news articles, but the letters closely reflect the readers' political positions, therefore offering identification with the paper.

摘要

本文探讨读者来信这一主题,它是普通公民进行公共讨论和辩论的历史最为悠久的论坛之一。为了展示在十年期间(2008年、2013年和2017年)的全国选举活动中,普通公民的声音在读者来信中是如何呈现的,我们将重点关注奥地利的一份报纸。在考察期间,该报纸的市场份额极高,高达40%,每天有三版篇幅着重刊登读者来信,并且它宣称自己愿意表明立场,尤其是在选举期间。基于对530封读者来信、政治板块的525篇文章的定量内容分析,以及来自奥地利全国选举研究中有关读者政治立场的调查数据,我们发现该报纸的读者来信并未反映,而是补充了政治板块的文章。读者来信的语气比新闻报道更为负面,但这些来信紧密反映了读者的政治立场,因此能让读者产生与该报纸的认同感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d038/7307409/301fb43b1958/RJOS_A_1702476_F0001_OB.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验