Suppr超能文献

The preovulatory prolactin surge: an evaluation of the role of dopamine.

作者信息

Arbogast L A, Ben-Jonathan N

机构信息

Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46223.

出版信息

Endocrinology. 1988 Dec;123(6):2690-5. doi: 10.1210/endo-123-6-2690.

Abstract

This study examined the contribution of dopamine (DA) to the control of PRL secretion during the preovulatory PRL surge. Immature female rats were injected with PMSG on day 28. At selected times during the periovulatory period, rats were injected with different pharmacological agents, and jugular blood was collected at frequent intervals. Blood PRL levels in vehicle-treated rats were low on the morning of day 30, rose 15- to 20-fold to peak levels from 1400-1500 h, were maintained at a plateau from 1900-2300 h, and were reduced to basal levels on the morning of day 31. Haloperidol, a DA antagonist, induced a 20-fold rise in PRL before the surge, a 2-fold rise above peak PRL levels at 1500 h, and a 50-fold rise on the morning of day 31. In contrast, haloperidol failed to alter PRL release during the plateau phase. Apomorphine, a DA agonist, reduced PRL levels when injected during either the peak or the plateau phase. Injection of 5-hydroxytryptophan, a serotonin precursor, increased PRL levels at all times examined. Anterior pituitary PRL content was reduced to 30% and 10% of the presurge level during the peak and plateau phases, respectively, but increased on the morning of day 31. Basal PRL release by hemipituitaries incubated in vitro paralleled the anterior pituitary PRL content, with markedly less PRL secreted during the peak and plateau phases compared to the presurge period. However, the percent inhibition of PRL release by hemipituitaries incubated with 50 nM DA was similar at all times tested. These data indicate that the peak PRL surge occurs in spite of DA input to the anterior pituitary, a continued responsiveness to DA inhibition, and a diminishing pituitary PRL content. We conclude that a nondopaminergic mechanism, possibly involving a PRL-releasing factor, is responsible for the peak. The plateau phase probably results from an absence of DA input to the anterior pituitary together with a reduction in the releasable pool of PRL. The termination of the PRL surge is caused by the restoration of DA input.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验