Hafshejani Tahereh Mohammadi, Wang Weijia, Heggemann Jonas, Nefedov Alexei, Heissler Stefan, Wang Yuemin, Rahe Philipp, Thissen Peter, Wöll Christof
Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Phys Chem Chem Phys. 2021 Apr 7;23(13):7696-7702. doi: 10.1039/d0cp02698k. Epub 2020 Jul 9.
Detailed information on structural, chemical, and physical properties of natural cleaved (10.4) calcite surfaces was obtained by a combined atomic force microscopy (AFM) and infrared (IR) study using CO as a probe molecule under ultrahigh vacuum (UHV) conditions. The structural quality of the surfaces was determined using non-contact AFM (NC-AFM), which also allowed assigning the adsorption site of CO molecules. Vibrational frequencies of adsorbed CO species were determined by polarization-resolved infrared reflection absorption spectroscopy (IRRAS). At low exposures, adsorption of CO on the freshly cleaved (10.4) calcite surface at a temperature of 62 K led to the occurrence of a single C-O vibrational band located at 2175.8 cm, blue-shifted with respect to the gas phase value. For larger exposures, a slight, coverage-induced redshift was observed, leading to a frequency of 2173.4 cm for a full monolayer. The width of the vibrational bands is extremely small, providing strong evidence that the cleaved calcite surface is well-defined with only one CO adsorption site. A quantitative analysis of the IRRA spectra recorded at different surface temperatures revealed a CO binding energy of -0.31 eV. NC-AFM data acquired at 5 K for sub-monolayer CO coverage reveal single molecules imaged as depressions at the position of the protruding surface features, in agreement with the IRRAS results. Since there are no previous experimental data of this type, the interpretation of the results was aided by employing density functional theory calculations to determine adsorption geometries, binding energies, and vibrational frequencies of carbon monoxide on the (10.4) calcite surface. It was found that the preferred geometry of CO on this surface is adsorption on top of calcium in a slightly tilted orientation. With increased coverage, the binding energy shows a small decrease, revealing the presence of repulsive adsorbate-adsorbate interactions.
在超高真空(UHV)条件下,通过结合原子力显微镜(AFM)和红外(IR)研究,并使用CO作为探针分子,获得了天然解理的(10.4)方解石表面的结构、化学和物理性质的详细信息。使用非接触原子力显微镜(NC-AFM)确定表面的结构质量,该显微镜还能够确定CO分子的吸附位点。通过偏振分辨红外反射吸收光谱(IRRAS)确定吸附的CO物种的振动频率。在低暴露量下,在62 K的温度下,CO在刚解理的(10.4)方解石表面上的吸附导致出现位于2175.8 cm的单一C-O振动带,相对于气相值发生蓝移。对于更大的暴露量,观察到轻微的、覆盖诱导的红移,导致完整单层的频率为2173.4 cm。振动带的宽度极小,有力地证明了解理的方解石表面定义明确,只有一个CO吸附位点。对在不同表面温度下记录的IRRA光谱进行的定量分析显示,CO的结合能为-0.31 eV。在5 K下获取的亚单层CO覆盖的NC-AFM数据显示,单个分子成像为突出表面特征位置处的凹陷,这与IRRAS结果一致。由于此前没有此类实验数据,通过采用密度泛函理论计算来确定一氧化碳在(10.4)方解石表面上的吸附几何结构、结合能和振动频率,辅助了对结果的解释。结果发现,CO在该表面上的优选几何结构是以略微倾斜的取向吸附在钙的顶部。随着覆盖度的增加,结合能略有下降,表明存在吸附质-吸附质之间的排斥相互作用。