Pham Tuan Anh, Coulthard Riley M, Zobel Mirijam, Maiti Amitesh, Buchsbaum Steven F, Loeb Colin, Campbell Patrick G, Plata Desirée L, Wood Brandon C, Fornasiero Francesco, Meshot Eric R
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.
J Phys Chem Lett. 2020 Aug 6;11(15):6150-6155. doi: 10.1021/acs.jpclett.0c01810. Epub 2020 Jul 20.
Ionic liquids (ILs) promise far greater electrochemical performance compared to aqueous systems, yet key physicochemical properties governing their assembly at interfaces within commonly used graphitic nanopores remain poorly understood. In this work, we combine synchrotron X-ray scattering with first-principles molecular dynamics simulations to unravel key structural characteristics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([TFSI]) ionic liquids confined in carbon slit pores. X-ray scattering reveals selective pore filling due to size exclusion, while filled pores exhibit disruption in the IL intermolecular structure, the extent of which increases for narrower slit pores. First-principles simulations corroborate this finding and quantitatively describe how perturbations in the local IL structure, particularly the hydrogen-bond network, depend strongly on the degree of confinement. Despite significant deviations in structure under confinement, electrochemical stability remains intact, which is important for energy storage based on nanoporous carbon electrodes (e.g., supercapacitors).
与水性体系相比,离子液体(ILs)有望展现出更优异的电化学性能,然而,对于常用石墨纳米孔内界面处离子液体组装的关键物理化学性质,人们仍知之甚少。在这项工作中,我们将同步辐射X射线散射与第一性原理分子动力学模拟相结合,以揭示限制在碳狭缝孔中的1-烷基-3-甲基咪唑鎓双(三氟甲基磺酰)亚胺([TFSI])离子液体的关键结构特征。X射线散射揭示了由于尺寸排阻导致的选择性孔填充,而填充的孔在离子液体分子间结构中表现出破坏,狭缝孔越窄,破坏程度越大。第一性原理模拟证实了这一发现,并定量描述了局部离子液体结构的扰动,特别是氢键网络,如何强烈依赖于限制程度。尽管在受限条件下结构存在显著偏差,但电化学稳定性依然完好,这对于基于纳米多孔碳电极(如超级电容器)的能量存储非常重要。