Korea Institute of Civil Engineering and Building Technology, 283 Goyangdar-Ro, Ilsan-Gu, Goyang-Si, Gyeonggi-Do, 411-712, Republic of Korea; Korea University of Science & Technology, 217 Gajung-ro Yuseong-gu, Daejeon, 305-333, Republic of Korea.
Korea Institute of Civil Engineering and Building Technology, 283 Goyangdar-Ro, Ilsan-Gu, Goyang-Si, Gyeonggi-Do, 411-712, Republic of Korea.
Chemosphere. 2020 Nov;259:127396. doi: 10.1016/j.chemosphere.2020.127396. Epub 2020 Jun 22.
The performance of the UV/HO advanced oxidation process (AOP) is dependent on water quality parameters, including the UV absorbance coefficient at 254 nm and hydroxyl radical (•OH) water background demand (scavenging factor, s). The •OH scavenging factor represents the •OH scavenging rate of the background substances in the water matrix, and it is known to be one of the key parameters to predict the performance of the UV/HO process. The •OH scavenging factor has been determined experimentally by using a probe compound such as pCBA and rhodamine B. The experimental method has been validated to accurately predict the micropollutants removal in the UV/HO process, but there is a need for an easier and simple method of determining the OH scavenging factor. We evaluated the alternative method to analyze the •OH scavenging factor using fluorescence excitation-emission matrix and parallel factor analysis (F-EEM/PARAFAC). The correlation between •OH scavenging factor and the spectroscopic characteristics and structure of different organic matter types was evaluated. Organic matter was characterized using a fluorescence excitation-emission matrix, parallel factor analysis, and liquid chromatography-organic carbon detection. Second-order reaction rates of humic acid sodium salt, sodium alginate, Suwannee River humic acid and bovine serum albumin were calculated as 1.30 × 10 M s, 1.39 × 10 M s, 1.03 × 10 M s, and 3.17 × 10 M s, respectively. Results of PARAFAC analysis, the ratio of humic and fulvic fluorescence component 2 to terrestrial humic-like fluorescence component 1 (C2/C1), and •OH scavenging factor showed high linearity. A predictive model, which combines with the F-EEM/PARAFAC method, predicted the optimal UV and HO dose to achieve target compound removal.
UV/HO 高级氧化工艺(AOP)的性能取决于水质参数,包括 254nm 处的紫外吸收系数和羟基自由基(•OH)水背景需求(清除因子,s)。•OH 清除因子表示水基质中背景物质的•OH 清除速率,它是预测 UV/HO 工艺性能的关键参数之一。•OH 清除因子已通过使用探针化合物(如 pCBA 和罗丹明 B)的实验方法确定。该实验方法已被验证可准确预测 UV/HO 工艺中微污染物的去除,但需要一种更简单的方法来确定•OH 清除因子。我们评估了使用荧光激发-发射矩阵和并行因子分析(F-EEM/PARAFAC)分析•OH 清除因子的替代方法。评估了•OH 清除因子与不同有机物类型的光谱特征和结构之间的相关性。使用荧光激发-发射矩阵、平行因子分析和液相色谱-有机碳检测对有机物进行了表征。腐殖酸钠、海藻酸钠、苏万尼河腐殖酸和牛血清白蛋白的二级反应速率分别计算为 1.30×10^M^s、1.39×10^M^s、1.03×10^M^s 和 3.17×10^M^s。PARAFAC 分析结果、腐殖质和富里酸荧光组分 2 与陆地腐殖质样荧光组分 1(C2/C1)的比值以及•OH 清除因子呈高度线性。结合 F-EEM/PARAFAC 方法的预测模型预测了达到目标化合物去除所需的最佳 UV 和 HO 剂量。