Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
Plant J. 2021 Jan;105(2):376-391. doi: 10.1111/tpj.14915. Epub 2020 Aug 2.
Melatonin is a multifunctional biomolecule found in both animals and plants. In this review, the biosynthesis, levels, signaling, and possible roles of melatonin and its metabolites in plants is summarized. Tryptamine 5-hydroxylase (T5H), which catalyzes the conversion of tryptamine into serotonin, has been proposed as a target to create a melatonin knockout mutant presenting a lesion-mimic phenotype in rice. With a reduced anabolic capacity for melatonin biosynthesis and an increased catabolic capacity for melatonin metabolism, all plants generally maintain low melatonin levels. Some plants, including Arabidopsis and Nicotiana tabacum (tobacco), do not possess tryptophan decarboxylase (TDC), the first committed step enzyme required for melatonin biosynthesis. Major melatonin metabolites include cyclic 3-hydroxymelatonin (3-OHM) and 2-hydroxymelatonin (2-OHM). Other melatonin metabolites such as N -acetyl-N -formyl-5-methoxykynuramine (AFMK), N-acetyl-5-methoxykynuramine (AMK) and 5-methoxytryptamine (5-MT) are also produced when melatonin is applied to Oryza sativa (rice). The signaling pathways of melatonin and its metabolites act via the mitogen-activated protein kinase (MAPK) cascade, possibly with Cand2 acting as a melatonin receptor, although the integrity of Cand2 remains controversial. Melatonin mediates many important functions in growth stimulation and stress tolerance through its potent antioxidant activity and function in activating the MAPK cascade. The concentration distribution of melatonin metabolites appears to be species specific because corresponding enzymes such as M2H, M3H, catalases, indoleamine 2,3-dioxygenase (IDO) and N-acetylserotonin deacetylase (ASDAC) are differentially expressed among plant species and even among different tissues within species. Differential levels of melatonin and its metabolites can lead to differential physiological effects among plants when melatonin is either applied exogenously or overproduced through ectopic overexpression.
褪黑素是一种在动植物中均存在的多功能生物分子。本文综述了褪黑素及其代谢物在植物中的生物合成、水平、信号转导及可能的作用。色胺 5-羟化酶(T5H)可催化色胺转化为 5-羟色胺,被提议作为创建一个具有损伤模拟表型的褪黑素敲除突变体的靶标,在水稻中。由于褪黑素生物合成的合成能力降低和褪黑素代谢的分解能力增加,所有植物通常维持低褪黑素水平。一些植物,包括拟南芥和烟草,不具有色氨酸脱羧酶(TDC),这是褪黑素生物合成所需的第一个关键酶。褪黑素的主要代谢产物包括环状 3-羟褪黑素(3-OHM)和 2-羟褪黑素(2-OHM)。当褪黑素应用于水稻(Oryza sativa)时,还会产生其他褪黑素代谢产物,如 N-乙酰-N-甲酰-5-甲氧基犬尿氨酸(AFMK)、N-乙酰-5-甲氧基犬尿氨酸(AMK)和 5-甲氧基色胺(5-MT)。褪黑素及其代谢物的信号通路通过丝裂原活化蛋白激酶(MAPK)级联反应发挥作用,可能通过 Cand2 作为褪黑素受体,尽管 Cand2 的完整性仍存在争议。褪黑素通过其强大的抗氧化活性和激活 MAPK 级联反应的功能,在刺激生长和提高应激耐受性方面发挥许多重要功能。褪黑素代谢物的浓度分布似乎具有物种特异性,因为相应的酶,如 M2H、M3H、过氧化氢酶、吲哚胺 2,3-双加氧酶(IDO)和 N-乙酰血清素脱乙酰酶(ASDAC),在植物物种之间甚至在同一物种的不同组织之间表达不同。当褪黑素外源性应用或通过异位过表达过量产生时,褪黑素及其代谢物的差异水平会导致植物之间产生不同的生理效应。