Suppr超能文献

《技术物理学之年:诊断放射学临床年度的必然转型》。

The TechnoPhysics Year: Transformation of Diagnostic Radiology's Clinical Year as a Matter of Necessity.

机构信息

The University of Florida College of Medicine - Jacksonville, Department of Radiology, 655 West 8th Street Jacksonville, FL 32209.

The University of Florida College of Medicine - Jacksonville, Department of Radiology, 655 West 8th Street Jacksonville, FL 32209.

出版信息

Acad Radiol. 2021 Sep;28(9):1287-1291. doi: 10.1016/j.acra.2020.04.045. Epub 2020 Jul 6.

Abstract

Given that artificial intelligence and machine learning is now a reality of modern existence, rapidly being applied to medicine, and especially radiology, we submit a new educational perspective. By codifying technology education during the diagnostic radiology internship, we believe it is not only possible but necessary, to reframe the identity of diagnostic radiology. This paper describes the restructuring of the radiology clinical internship, limiting clinical rotations to high-yield essentials, thereby allowing for the introduction of data and technology science, and comprehensive medical physics training. By linking modality-immersion based training with the physics of each technology, we postulate a more thorough understanding and, ultimately, the mastery of current and future technological innovations. Concurrently we advocate for the study of artificial intelligence and machine learning in order to understand how radiologists can apply this technology to help patients on the precision and population health levels. This training would allow interns to spend the majority of their time under the umbrella of a radiology department, in lieu of multiple rotations on an assortment of clinical services. An in-depth technology and physics exam at the end of the internship would be a natural transition to the start of the R1 year, allowing for the application of this newly attained knowledge throughout their residency. Diagnostic radiologists have led medicine into the digital era, and now we should lead the medical community into this transformational era as the "Data-Driven Physician" of the 21 century.

摘要

鉴于人工智能和机器学习现在已经成为现代生活的现实,并迅速应用于医学,尤其是放射学,我们提出了一种新的教育视角。通过在诊断放射学实习期间规范技术教育,我们认为不仅有可能,而且有必要重新构建诊断放射学的身份。本文描述了放射学临床实习的重组,将临床轮转限制在高收益的核心内容上,从而可以引入数据和技术科学以及全面的医学物理学培训。通过将基于模态沉浸的培训与每种技术的物理学联系起来,我们假设可以更全面地理解并最终掌握当前和未来的技术创新。同时,我们提倡研究人工智能和机器学习,以便了解放射科医生如何将这项技术应用于帮助患者在精准医疗和人群健康水平上。这种培训将允许实习生在放射科部门的保护伞下度过大部分时间,而不是在各种临床服务上进行多次轮转。实习结束时的深入技术和物理考试将是 R1 年开始的自然过渡,允许将新获得的知识应用于整个住院医师培训过程。诊断放射科医生引领医学进入了数字时代,现在我们应该作为 21 世纪的“数据驱动型医生”引领医疗界进入这个变革时代。

相似文献

2
4
Artificial Intelligence and the Trainee Experience in Radiology.人工智能与放射科住院医师培训体验
J Am Coll Radiol. 2020 Nov;17(11):1388-1393. doi: 10.1016/j.jacr.2020.09.028. Epub 2020 Oct 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验