Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.
Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):18079-18090. doi: 10.1073/pnas.2006238117. Epub 2020 Jul 9.
Ion channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins. Here, we report the discovery of a family of endoplasmic reticulum (ER) transmembrane proteins that associate with and modulate HCN4. Lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, and Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage dependence of HCN4 in response to the binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage dependence in the absence of cAMP. The mechanisms of action of LRMP and IRAG are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform. We also found that IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 current. Our results suggest important roles for LRMP and IRAG in the regulation of cellular excitability, as tools for advancing mechanistic understanding of HCN4 channel function, and as possible scaffolds for coordination of signaling pathways.
可兴奋细胞中的离子通道在大分子复合物中发挥作用,辅助蛋白调节孔形成亚基的生物物理特性。超极化激活、环核苷酸敏感的 HCN4 通道是全身细胞(包括丘脑皮质神经元和心脏起搏细胞)膜兴奋性的关键决定因素。我们之前表明,HCN4 通道的特性在不同细胞类型中差异很大,可能是由于辅助蛋白的内源性表达。在这里,我们报告了一种内质网(ER)跨膜蛋白家族的发现,该家族与 HCN4 相关并调节其功能。淋巴受限膜蛋白(LRMP,Jaw1)和三磷酸肌醇受体相关鸟苷酸激酶底物(IRAG,Mrvi1 和 Jaw1L)是具有小 ER 腔域和大细胞质域的同源蛋白。尽管它们具有同源性,但 LRMP 和 IRAG 对 HCN4 的影响不同。LRMP 是一种失活调节剂,可抑制 cAMP 结合后 HCN4 电压依赖性的典型去极化移位。相比之下,IRAG 在没有 cAMP 的情况下使 HCN4 的基本电压依赖性去极化,从而导致 HCN4 功能的增加。LRMP 和 IRAG 的作用机制独立于运输和 cAMP 结合,并且它们是 HCN4 同工型特异性的。我们还发现 IRAG 在小鼠窦房结中高度表达,计算机建模预测其存在会增加 HCN4 电流。我们的结果表明 LRMP 和 IRAG 在细胞兴奋性调节中具有重要作用,可作为深入了解 HCN4 通道功能的工具,并可能作为信号通路协调的支架。