Suppr超能文献

量子线中自旋轨道耦合影响下的近藤效应。

Kondo effect under the influence of spin-orbit coupling in a quantum wire.

作者信息

Lopes V, Martins G B, Manya M A, Anda E V

机构信息

Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Rio de Janeiro, 22453-900, Brazil.

Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig, 03690, Alicante, Spain.

出版信息

J Phys Condens Matter. 2020 Aug 3;32(43). doi: 10.1088/1361-648X/aba45c.

Abstract

The analysis of the impact of spin-orbit coupling (SOC) on the Kondo state has generated considerable controversy, mainly regarding the dependence of the Kondo temperatureon SOC strength. Here, we study the one-dimensional (1D) single impurity Anderson model (SIAM) subjected to Rashba () and Dresselhaus () SOC. It is shown that, due to time-reversal symmetry, the hybridization function between impurity and quantum wire is diagonal and spin independent (as it is the case for the zero-SOC SIAM), thus the finite-SOC SIAM has a Kondo ground state similar to that for the zero-SOC SIAM. This similarity allows the use of the Haldane expression for, with parameters renormalized by SOC, which are calculated through a physically motivated change of basis. Analytic results for the parameters of the SOC-renormalized Haldane expression are obtained, facilitating the analysis of the SOC effect over. It is found that SOC acting in the quantum wire exponentially decreaseswhile SOC at the impurity exponentially increases it. These analytical results are fully supported by calculations using the numerical renormalization group (NRG), applied to the wide-band regime, and the projector operator approach, applied to the infinite-regime. Literature results, using quantum Monte Carlo, for a system with Fermi energy near the bottom of the band, are qualitatively reproduced, using NRG. In addition, it is shown that the 1D SOC SIAM for arbitraryanddisplays a persistent spin helix SU(2) symmetry similar to the one for a 2D Fermi sea with the restriction=.

摘要

自旋轨道耦合(SOC)对近藤态影响的分析引发了相当大的争议,主要集中在近藤温度对SOC强度的依赖性上。在此,我们研究了受Rashba( )和Dresselhaus( )SOC作用的一维(1D)单杂质安德森模型(SIAM)。结果表明,由于时间反演对称性,杂质与量子线之间的杂化函数是对角的且与自旋无关(如同零SOC的SIAM情况),因此有限SOC的SIAM具有与零SOC的SIAM相似的近藤基态。这种相似性使得可以使用霍尔丹表达式来描述 ,其参数由SOC进行重整化,这些参数通过基于物理动机的基变换来计算。得到了SOC重整化的霍尔丹表达式参数的解析结果,便于分析SOC对 的影响。研究发现,作用在量子线中的SOC会指数式地降低 ,而杂质处的SOC会指数式地增加 。这些解析结果得到了应用于宽带区域的数值重整化群(NRG)计算以及应用于无限区域的投影算符方法的充分支持。使用NRG定性地重现了文献中利用量子蒙特卡罗方法得到的费米能在能带底部附近的系统的结果。此外,研究表明,对于任意 和 的一维SOC SIAM表现出与二维费米海在限制条件 = 时相似的持续自旋螺旋SU(2)对称性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验