Suppr超能文献

火星的核心形成与地球物理特性

Core Formation and Geophysical Properties of Mars.

作者信息

Brennan Matthew C, Fischer Rebecca A, Irving Jessica C E

机构信息

Harvard University, Department of Earth and Planetary Sciences.

Princeton University, Department of Geosciences.

出版信息

Earth Planet Sci Lett. 2020 Jan 15;530. doi: 10.1016/j.epsl.2019.115923. Epub 2019 Nov 11.

Abstract

The chemical and physical properties of the interiors of terrestrial planets are largely determined during their formation and differentiation. Modeling a planet's formation provides important insights into the properties of its core and mantle, and conversely, knowledge of those properties may constrain formational narratives. Here, we present a multi-stage model of Martian core formation in which we calculate core-mantle equilibration using parameterizations from high pressure-temperature metal-silicate partitioning experiments. We account for changing core-mantle boundary (CMB) conditions, composition-dependent partitioning, and partial equilibration of metal and silicate, and we evolve oxygen fugacity (O) self-consistently. The model successfully reproduces published meteorite-based estimates of most elemental abundances in the bulk silicate Mars, which can be used to estimate core formation conditions and core composition. This composition implies that the primordial material that formed Mars was significantly more oxidized (0.9-1.4 log units below the iron-wüstite buffer) than that of the Earth, and that core-mantle equilibration in Mars occurred at 42-60% of the evolving CMB pressure. On average, at least 84% of accreted metal and at least 40% of the mantle were equilibrated in each impact, a significantly higher degree of metal equilibration than previously reported for the Earth. In agreement with previous studies, the modeled Martian core is rich in sulfur (18-19 wt%), with less than one weight percent O and negligible Si. We have used these core and mantle compositions to produce physical models of the present-day Martian interior and evaluate the sensitivity of core radius to crustal thickness, mantle temperature, core composition, core temperature, and density of the core alloy. Trade-offs in how these properties affect observable physical parameters like planetary mass, radius, moment of inertia, and tidal Love number define a range of likely core radii: 1620-1870 km. Seismic velocity profiles for several combinations of model parameters have been used to predict seismic body-wave travel times and planetary normal mode frequencies. These results may be compared to forthcoming Martian seismic data to further constrain core formation conditions and geophysical properties.

摘要

类地行星内部的化学和物理性质在其形成和分化过程中很大程度上就已确定。对行星形成过程进行建模能为其地核和地幔的性质提供重要见解,反之,这些性质的相关知识也可能限制形成过程的描述。在此,我们提出了一个火星地核形成的多阶段模型,其中我们使用高压 - 高温金属 - 硅酸盐分配实验的参数化方法来计算地核 - 地幔平衡。我们考虑了不断变化的地核 - 地幔边界(CMB)条件、成分依赖的分配以及金属和硅酸盐的部分平衡,并且自洽地演化氧逸度(O)。该模型成功再现了基于陨石对火星整体硅酸盐中大多数元素丰度的已发表估计值,这些估计值可用于估算地核形成条件和地核成分。这种成分意味着形成火星的原始物质比地球的原始物质氧化程度显著更高(比铁 - 方铁矿缓冲剂低0.9 - 1.4对数单位),并且火星中的地核 - 地幔平衡发生在演化的CMB压力的42% - 60%。平均而言,每次撞击中至少84%的吸积金属和至少40%的地幔达到平衡,这一金属平衡程度比先前报道的地球情况要高得多。与先前的研究一致,模拟的火星地核富含硫(18 - 19 wt%),氧含量低于1 wt%且硅含量可忽略不计。我们利用这些地核和地幔成分建立了现今火星内部的物理模型,并评估了地核半径对地壳厚度、地幔温度、地核成分、地核温度以及地核合金密度的敏感性。这些性质如何影响诸如行星质量、半径、转动惯量和潮汐勒夫数等可观测物理参数之间的权衡确定了一系列可能的地核半径:1620 - 1870千米。已使用几种模型参数组合的地震速度剖面来预测地震体波传播时间和行星正常模式频率。这些结果可与即将到来的火星地震数据进行比较,以进一步限制地核形成条件和地球物理性质。

相似文献

1
Core Formation and Geophysical Properties of Mars.火星的核心形成与地球物理特性
Earth Planet Sci Lett. 2020 Jan 15;530. doi: 10.1016/j.epsl.2019.115923. Epub 2019 Nov 11.
5
Evidence for a liquid silicate layer atop the Martian core.火星核之上存在液态硅酸盐层的证据。
Nature. 2023 Oct;622(7984):718-723. doi: 10.1038/s41586-023-06586-4. Epub 2023 Oct 25.
6
First observations of core-transiting seismic phases on Mars.首次观测到火星核心穿越地震相。
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2217090120. doi: 10.1073/pnas.2217090120. Epub 2023 Apr 24.
8
Seismic detection of the martian core.火星内核的地震探测。
Science. 2021 Jul 23;373(6553):443-448. doi: 10.1126/science.abi7730.

引用本文的文献

1
Seismic detection of a 600-km solid inner core in Mars.火星上600公里固态内核的地震探测。
Nature. 2025 Sep;645(8079):67-72. doi: 10.1038/s41586-025-09361-9. Epub 2025 Sep 3.
2
First observations of core-transiting seismic phases on Mars.首次观测到火星核心穿越地震相。
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2217090120. doi: 10.1073/pnas.2217090120. Epub 2023 Apr 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验