Suppr超能文献

调整共价有机框架的电子能级以制备高倍率钠离子电池负极。

Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode.

作者信息

Haldar Sattwick, Kaleeswaran Dhananjayan, Rase Deepak, Roy Kingshuk, Ogale Satishchandra, Vaidhyanathan Ramanathan

机构信息

Department of Chemistry, Indian Institute of Science Education and Research, Pune, India.

出版信息

Nanoscale Horiz. 2020 Aug 1;5(8):1264-1273. doi: 10.1039/d0nh00187b. Epub 2020 Jul 10.

Abstract

Crystalline Covalent Organic Frameworks (COFs) possess ordered accessible nano-channels. When these channels are decorated with redox-active functional groups, they can serve as the anode in metal ion batteries (LIB and SIB). Though sodium's superior relative abundance makes it a better choice over lithium, the energetically unfavourable intercalation of the larger sodium ion makes it incompatible with the commercial graphite anodes used in Li-ion batteries. Also, their sluggish movement inside the electrodes restricts the fast sodiation of SIB. Creating an electronic driving force at the electrodes via chemical manipulation can be a versatile approach to overcome this issue. Herein, we present anodes for SIB drawn on three isostructural COFs with nearly the same Highest Occupied Molecular Orbitals (HOMO) levels but with varying Lowest Unoccupied Molecular Orbitals (LUMO) energy levels. This variation in the LUMO levels has been deliberately obtained by the inclusion of electron-deficient centers (phenyl vs. tetrazine vs. bispyridine-tetrazine) substituents into the modules that make up the COF. With the reduction in the cell-potential, the electrons accumulate in the anti-bonding LUMO. Now, these electron-dosed LUMO levels become efficient anodes for attracting the otherwise sluggish sodium ions from the electrolyte. Also, the intrinsic porosity of the COF favors the lodging and diffusion of the Na ions. Cells made with these COFs achieve a high specific capacity (energy density) and rate performance (rapid charging-discharging), something that is not as easy for Na compared to the much smaller sized Li. The bispyridine-tetrazine COF with the lowest LUMO energy shows a specific capacity of 340 mA h g at 1 A g and 128 mA h g at a high current density of 15 A g. Only a 24% drop appears on increasing the current density from 0.1 to 1 A g, which is the lowest among all the top-performing COF derived Na-ion battery anodes.

摘要

晶态共价有机框架(COF)具有有序的可及纳米通道。当这些通道用氧化还原活性官能团修饰时,它们可作为金属离子电池(LIB和SIB)的阳极。尽管钠的相对丰度更高,使其比锂更具优势,但较大的钠离子在能量上不利于嵌入,这使其与锂离子电池中使用的商业石墨阳极不兼容。此外,它们在电极内部的缓慢移动限制了SIB的快速 sodiation。通过化学操作在电极处产生电子驱动力可能是克服这一问题的通用方法。在此,我们展示了基于三种等结构COF的SIB阳极,它们具有几乎相同的最高占据分子轨道(HOMO)水平,但最低未占据分子轨道(LUMO)能级不同。LUMO能级的这种变化是通过在构成COF的模块中引入缺电子中心(苯基对四嗪对双吡啶 - 四嗪)取代基有意实现的。随着电池电位的降低,电子在反键LUMO中积累。现在,这些电子注入的LUMO能级成为吸引原本缓慢的钠离子从电解质中过来的高效阳极。此外,COF的固有孔隙率有利于Na离子的容纳和扩散。用这些COF制成的电池实现了高比容量(能量密度)和倍率性能(快速充放电),与小得多的Li相比,这对Na来说并不容易。具有最低LUMO能量的双吡啶 - 四嗪COF在1 A g时显示出340 mA h g的比容量,在15 A g的高电流密度下为128 mA h g。从0.1 A g增加到1 A g时,仅出现24%的下降,这是所有性能最佳的COF衍生钠离子电池阳极中最低的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验