Zhou Liqian, Xie Haiyang, Chen Xiaona, Wan Jianqin, Xu Shengjun, Han Yaxuan, Chen Dong, Qiao Yiting, Zhou Lin, Zheng Shusen, Wang Hangxiang
The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; School of Medicine, Zhejiang University, Hangzhou, 310003, PR China..
Acta Biomater. 2020 Sep 1;113:464-477. doi: 10.1016/j.actbio.2020.07.007. Epub 2020 Jul 8.
Although some formats of nanomedicines are now available for clinical use, the translation of new nanoparticles to the clinic remains a considerable challenge. Here, we describe a simple yet cost-effective strategy that converts a toxic drug, cabazitaxel, into a safe and effective nanomedicine. The strategy involves the ligation of drug molecules via a self-immolating spacer, followed by dimerization-induced self-assembly to assemble stable nanoparticles. Self-assembled cabazitaxel dimers could be further refined by PEGylation with amphiphilic polymers suitable for preclinical studies. This protocol enables the formation of systemically injectable nanoparticles (termed SNPs) with nearly quantitative entrapment efficiencies and exceptionally high drug loading (> 86%). In healthy mice, PEGylated SNPs show a favorable safety profile, with reduced systemic toxicity and negligible immunotoxicity. In two separate mouse xenograft models of cancer, administration of SNPs produces efficient antitumor activity with durable tumor suppression during therapeutic studies. Overall, this methodology opens up a practical and expedient route for the fabrication of clinically useful nanomedicines, transforming a hydrophobic and highly toxic drug into a systemic self-deliverable nanotherapy. STATEMENT OF SIGNIFICANCE: Despite the great progress in cancer nanomedicines, clinical translation of nanomedicines still remains a considerable challenge. In this study, we designed a self-assembling nanoplatform based on cabazitaxel dimer reversibly ligated via a bioactivatable linker. This approach enabled the generation of systemically injectable nanomedicines with quantitative entrapment efficiencies and exceptionally high drug loading (> 86%), which greatly obviates concerns about excipient-associated side effects. Self-assembled dimeric cabazitaxel exhibited a higher safety profile than free cabazitaxel and negligible immunotoxicity in animals. This is a practical and expedient example how the chemical ligation of a hydrophobic and highly toxic anticancer drug can be leveraged to create a self-assembling delivery nanotherapy which preserves inherent pharmacologic efficacy while reduces in vivo systemic and immune toxicity.
尽管现在有一些纳米药物剂型可用于临床,但将新型纳米颗粒转化为临床应用仍然是一个巨大的挑战。在此,我们描述了一种简单且经济高效的策略,可将毒性药物卡巴他赛转化为安全有效的纳米药物。该策略包括通过自毁型间隔基连接药物分子,然后通过二聚化诱导自组装来组装稳定的纳米颗粒。自组装的卡巴他赛二聚体可以通过用适合临床前研究的两亲性聚合物进行聚乙二醇化进一步优化。该方案能够形成具有几乎定量包封效率和极高药物载量(>86%)的可全身注射的纳米颗粒(称为SNPs)。在健康小鼠中,聚乙二醇化的SNPs显示出良好的安全性,全身毒性降低且免疫毒性可忽略不计。在两种不同的小鼠癌症异种移植模型中,在治疗研究期间给予SNPs可产生有效的抗肿瘤活性并持久抑制肿瘤。总体而言,这种方法为制备临床有用的纳米药物开辟了一条实用且便捷的途径,将一种疏水且剧毒的药物转化为一种可全身自我递送的纳米疗法。重要性声明:尽管癌症纳米药物取得了巨大进展,但纳米药物的临床转化仍然是一个巨大的挑战。在本研究中,我们设计了一种基于通过可生物活化连接子可逆连接的卡巴他赛二聚体的自组装纳米平台。这种方法能够产生具有定量包封效率和极高药物载量(>86%)的可全身注射的纳米药物,这大大消除了对辅料相关副作用的担忧。自组装的二聚体卡巴他赛在动物中表现出比游离卡巴他赛更高的安全性和可忽略不计的免疫毒性。这是一个实用且便捷的例子,展示了如何利用疏水且剧毒的抗癌药物的化学连接来创建一种自组装递送纳米疗法,该疗法在保留固有药理功效的同时降低体内全身毒性和免疫毒性。
Future Med Chem. 2025-3