Suppr超能文献

多尺度自上而下的方法用于建模癫痫蛋白-蛋白相互作用网络分析,以识别驱动节点和途径。

Multi-scale top-down approach for modelling epileptic protein-protein interaction network analysis to identify driver nodes and pathways.

机构信息

Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, India.

Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, India.

出版信息

Comput Biol Chem. 2020 Oct;88:107323. doi: 10.1016/j.compbiolchem.2020.107323. Epub 2020 Jun 24.

Abstract

Protein - Protein Interaction Network (PPIN) analysis unveils molecular level mechanisms involved in disease condition. To explore the complex regulatory mechanisms behind epilepsy and to address the clinical and biological issues of epilepsy, in silico techniques are feasible in a cost- effective manner. In this work, a hierarchical procedure to identify influential genes and regulatory pathways in epilepsy prognosis is proposed. To obtain key genes and pathways causing epilepsy, integration of two benchmarked datasets which are exclusively devoted for complex disorders is done as an initial step. Using STRING database, PPIN is constructed for modelling protein-protein interactions. Further, key interactions are obtained from the established PPIN using network centrality measures followed by network propagation algorithm -Random Walk with Restart (RWR). The outcome of the method reveals some influential genes behind epilepsy prognosis, along with their associated pathways like PI3 kinase, VEGF signaling, Ras, Wnt signaling etc. In comparison with similar works, our results have shown improvement in identifying unique molecular functions, biological processes, gene co-occurrences etc. Also, CORUM provides an annotation for approximately 60% of similarity in human protein complexes with the obtained result. We believe that the formulated strategy can put-up the vast consideration of indigenous drugs towards meticulous identification of genes encoded by protein against several combinatorial disorders.

摘要

蛋白质 - 蛋白质相互作用网络(PPIN)分析揭示了疾病状态下涉及的分子水平机制。为了探索癫痫背后的复杂调控机制,并解决癫痫的临床和生物学问题,以经济有效的方式应用计算技术是可行的。在这项工作中,提出了一种分层程序,用于识别癫痫预后中的有影响基因和调控途径。为了获得导致癫痫的关键基因和途径,我们首先整合了两个专门用于复杂疾病的基准数据集。使用 STRING 数据库,构建了用于模拟蛋白质 - 蛋白质相互作用的 PPIN。然后,使用网络中心性度量从建立的 PPIN 中获得关键相互作用,随后使用网络传播算法 - 随机游走重启(RWR)。该方法的结果揭示了癫痫预后背后的一些有影响的基因,以及它们相关的途径,如 PI3 激酶、VEGF 信号、Ras、Wnt 信号等。与类似的工作相比,我们的结果在识别独特的分子功能、生物学过程、基因共现等方面显示出了改进。此外,CORUM 为获得的结果提供了大约 60%的人类蛋白质复合物相似性注释。我们相信,所制定的策略可以对本土药物进行广泛考虑,以精细识别针对多种组合疾病的蛋白质编码基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验