文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习重新利用公开数据发现 COVID-19 治疗方法。

Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning.

机构信息

School of Computer Science and Engineering, Hunan University, Changsha 410012, China.

AWS Shanghai AI Lab, Shanghai 200335, China.

出版信息

J Proteome Res. 2020 Nov 6;19(11):4624-4636. doi: 10.1021/acs.jproteome.0c00316. Epub 2020 Jul 24.


DOI:10.1021/acs.jproteome.0c00316
PMID:32654489
Abstract

There have been more than 2.2 million confirmed cases and over 120 000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), in the United States alone. However, there is currently a lack of proven effective medications against COVID-19. Drug repurposing offers a promising route for the development of prevention and treatment strategies for COVID-19. This study reports an integrative, network-based deep-learning methodology to identify repurposable drugs for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive knowledge graph that includes 15 million edges across 39 types of relationships connecting drugs, diseases, proteins/genes, pathways, and expression from a large scientific corpus of 24 million PubMed publications. Using Amazon's AWS computing resources and a network-based, deep-learning framework, we identified 41 repurposable drugs (including dexamethasone, indomethacin, niclosamide, and toremifene) whose therapeutic associations with COVID-19 were validated by transcriptomic and proteomics data in SARS-CoV-2-infected human cells and data from ongoing clinical trials. Whereas this study by no means recommends specific drugs, it demonstrates a powerful deep-learning methodology to prioritize existing drugs for further investigation, which holds the potential to accelerate therapeutic development for COVID-19.

摘要

仅在美国,由新型严重急性呼吸综合征冠状病毒(SARS-CoV-2)引起的人类冠状病毒病 2019(COVID-19)大流行就已确诊超过 220 万例病例,超过 120000 人死亡。然而,目前针对 COVID-19 还没有有效的药物。药物再利用为 COVID-19 的预防和治疗策略的发展提供了一条很有前途的途径。本研究报告了一种综合的、基于网络的深度学习方法,用于鉴定 COVID-19 的可再利用药物(称为 CoV-KGE)。具体来说,我们构建了一个综合的知识图谱,其中包括 39 种关系类型,连接着药物、疾病、蛋白质/基因、途径和从 2400 万篇 PubMed 出版物的大型科学文献集中提取的表达信息,包含 1500 万条边。利用亚马逊的 AWS 计算资源和基于网络的深度学习框架,我们鉴定出了 41 种可再利用药物(包括地塞米松、吲哚美辛、硝氯酚和托瑞米芬),这些药物与 COVID-19 的治疗相关性已通过 SARS-CoV-2 感染的人类细胞中的转录组和蛋白质组学数据以及正在进行的临床试验数据得到验证。虽然这项研究绝不是推荐特定的药物,但它展示了一种强大的深度学习方法,可以优先考虑进一步研究的现有药物,这有可能加速 COVID-19 的治疗开发。

相似文献

[1]
Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning.

J Proteome Res. 2020-7-24

[2]
Repurposing old drugs as antiviral agents for coronaviruses.

Biomed J. 2020-5-23

[3]
Potential of Approved Antimalarial Drugs for Repurposing Against COVID-19.

OMICS. 2020-7-30

[4]
COVID-19: Underpinning Research for Detection, Therapeutics, and Vaccines Development.

Pharm Nanotechnol. 2020

[5]
Combating devastating COVID-19 by drug repurposing.

Int J Antimicrob Agents. 2020-4-17

[6]
The Anatomy of the SARS-CoV-2 Biomedical Literature: Introducing the CovidX Network Algorithm for Drug Repurposing Recommendation.

J Med Internet Res. 2020-8-20

[7]
Transcriptome-based drug repositioning for coronavirus disease 2019 (COVID-19).

Pathog Dis. 2020-6-1

[8]
Rapid repurposing of drugs for COVID-19.

Science. 2020-5-22

[9]
Old Drugs for a New Virus: Repurposed Approaches for Combating COVID-19.

ACS Infect Dis. 2020-9-11

[10]
Three Decades of Interferon-β in Multiple Sclerosis: Can We Repurpose This Information for the Management of SARS-CoV2 Infection?

Front Immunol. 2020-6-18

引用本文的文献

[1]
Reconciling multiple connectivity-based systems biology methods for drug repurposing.

Brief Bioinform. 2025-7-2

[2]
Integration of Augmented Reality, Virtual Reality, and Extended Reality in Healthcare and Medical Education: A Glimpse into the Emerging Horizon in LMICs-A Systematic Review.

J Med Educ Curric Dev. 2025-5-29

[3]
A Multi-Modal Graph Neural Network Framework for Parkinson's Disease Therapeutic Discovery.

Int J Mol Sci. 2025-5-7

[4]
Knowledge discovery of diseases symptoms and rehabilitation measures in Q&A communities.

Sci Rep. 2025-4-19

[5]
A review of feature selection strategies utilizing graph data structures and Knowledge Graphs.

Brief Bioinform. 2024-9-23

[6]
A comprehensive IDA and SWATH-DIA Lipidomics and Metabolomics dataset: SARS-CoV-2 case control study.

Sci Data. 2024-9-12

[7]
Combination therapy synergism prediction for virus treatment using machine learning models.

PLoS One. 2024

[8]
Drug Repurposing for COVID-19 by Constructing a Comorbidity Network with Central Nervous System Disorders.

Int J Mol Sci. 2024-8-16

[9]
Explainable drug repurposing via path based knowledge graph completion.

Sci Rep. 2024-7-18

[10]
Functional Genomics in Psoriasis.

Int J Mol Sci. 2024-7-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索