Suppr超能文献

基于标记的生物力学运动捕捉数据的自动间隙填补。

Automated gap-filling for marker-based biomechanical motion capture data.

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.

出版信息

Comput Methods Biomech Biomed Engin. 2020 Nov;23(15):1180-1189. doi: 10.1080/10255842.2020.1789971. Epub 2020 Jul 11.

Abstract

Marker-based motion capture presents the problem of gaps, which are traditionally processed using motion capture software, requiring intensive manual input. We propose and study an automated method of gap-filling that uses inverse kinematics (IK) to close the loop of an iterative process to minimize error, while nearly eliminating user input. Comparing our method to manual gap-filling, we observe a 21% reduction in the worst-case gap-filling error ( < 0.05), and an 80% reduction in completion time ( < 0.01). Our contribution encompasses the release of an open-source repository of the method and interaction with OpenSim.

摘要

基于标记的运动捕捉存在间隙问题,传统上使用运动捕捉软件处理,需要大量的手动输入。我们提出并研究了一种自动的间隙填充方法,该方法使用反向运动学(IK)来封闭迭代过程的循环,以最小化误差,同时几乎消除用户输入。将我们的方法与手动间隙填充进行比较,我们观察到最坏情况下的间隙填充误差( < 0.05)降低了 21%,完成时间( < 0.01)降低了 80%。我们的贡献包括发布该方法的开源存储库以及与 OpenSim 的交互。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验