Suppr超能文献

光学运动捕捉序列中伪影失真的检测与分类。

Detection and Classification of Artifact Distortions in Optical Motion Capture Sequences.

机构信息

Department of Graphics, Computer Vision and Digital Systems, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.

Polish-Japanese Academy of Information Technology, Koszykowa 86, 02-008 Warsaw, Poland.

出版信息

Sensors (Basel). 2022 May 27;22(11):4076. doi: 10.3390/s22114076.

Abstract

Optical motion capture systems are prone to errors connected to marker recognition (e.g., occlusion, leaving the scene, or mislabeling). These errors are then corrected in the software, but the process is not perfect, resulting in artifact distortions. In this article, we examine four existing types of artifacts and propose a method for detection and classification of the distortions. The algorithm is based on the derivative analysis, low-pass filtering, mathematical morphology, and loose predictor. The tests involved multiple simulations using synthetically-distorted sequences, performance comparisons to human operators (concerning real life data), and an applicability analysis for the distortion removal.

摘要

光学运动捕捉系统容易出现与标记识别相关的错误(例如遮挡、离开场景或标记错误)。这些错误会在软件中进行修正,但这个过程并不完美,会导致伪影失真。在本文中,我们研究了四种现有的伪影类型,并提出了一种用于检测和分类失真的方法。该算法基于导数分析、低通滤波、数学形态学和宽松预测器。测试涉及使用合成失真序列进行多次模拟、与人类操作员(涉及实际数据)的性能比较,以及对失真去除的适用性分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4054/9185486/89ccfd4df90d/sensors-22-04076-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验