Grasegger Georg, Koutschan Christoph, Tsigaridas Elias
Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria.
Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, Laboratoire d'Informatique de Paris 6 (LIP6), Équipe PolSys, Paris Cedex, France.
Exp Math. 2018 Mar 27;29(2):125-136. doi: 10.1080/10586458.2018.1437851. eCollection 2020.
Computing the number of realizations of a minimally rigid graph is a notoriously difficult problem. Toward this goal, for graphs that are minimally rigid in the plane, we take advantage of a recently published algorithm, which is the fastest available method, although its complexity is still exponential. Combining computational results with the theory of constructing new rigid graphs by gluing, we give a new lower bound on the maximal possible number of (complex) realizations for graphs with a given number of vertices. We extend these ideas to rigid graphs in three dimensions and we derive similar lower bounds, by exploiting data from extensive Gröbner basis computations.
计算最小刚性图的实现数量是一个极其困难的问题。为了实现这一目标,对于平面上的最小刚性图,我们利用了最近发表的一种算法,这是目前可用的最快方法,尽管其复杂度仍然是指数级的。将计算结果与通过胶合构造新的刚性图的理论相结合,我们给出了具有给定顶点数的图的(复杂)实现的最大可能数量的新下界。我们将这些想法扩展到三维刚性图,并通过利用来自广泛的格罗比纳基计算的数据得出类似的下界。