Department of Mathematics, Rider University, , Lawrenceville, NJ 08648, USA.
Philos Trans A Math Phys Eng Sci. 2013 Dec 30;372(2008):20120143. doi: 10.1098/rsta.2012.0143. Print 2014 Feb 13.
Periodic frameworks with crystallographic symmetry are investigated from the perspective of a general deformation theory of periodic bar-and-joint structures in Euclidean spaces of arbitrary dimension. It is shown that natural parametrizations provide affine section descriptions for families of frameworks with a specified graph and symmetry. A simple geometrical setting for displacive phase transitions is obtained. Upper bounds are derived for the number of realizations of minimally rigid periodic graphs.
本文从任意维欧几里得空间中周期性杆-节结构的一般变形理论的角度研究了具有晶体对称性的周期性框架。结果表明,自然参数化提供了具有指定图和对称性的框架族的仿射截面描述。得到了位移型相变的简单几何设置。推导出了极小刚性周期性图的实现数量的上界。