College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, U.K.
ACS Appl Mater Interfaces. 2020 Aug 5;12(31):35328-35336. doi: 10.1021/acsami.0c08036. Epub 2020 Jul 23.
Graphene exhibits excellent physical, electronic, and chemical properties that are highly desirable for biosensing applications. However, most graphene biosensors are based on graphene lying flat on a substrate and therefore do not utilize its maximum specific surface area for ultrasensitive detection. Herein, we report the novel use of photonic annealing on a flexographically printed graphene-ethyl cellulose composite to produce vertically aligned graphene (VAG) biosensors for ultrasensitive detection of algal toxins in drinking water. These VAG structures, which maximized the specific surface area of graphene, were formed by partial removal of the polymeric binder upon applying intense pulsed light on the printed graphene. A label-free and low-cost VAG biosensor based on a non-faradaic electrochemical impedance spectroscopy technique was fabricated. The biosensor exhibited a limit of detection of 1.2 ng/L for microcystin-LR in local tap water. Such an ultrasensitive VAG biosensor is suitable for low-cost mass production using an integrated roll-to-roll flexographic printing with rapid photonic annealing technique.
石墨烯具有优异的物理、电子和化学性能,非常适合用于生物传感应用。然而,大多数基于石墨烯的生物传感器都是基于石墨烯平铺在基底上,因此没有充分利用其最大的比表面积来进行超灵敏检测。在此,我们报告了一种新颖的方法,即在柔性版印刷的石墨烯-乙基纤维素复合材料上进行光子退火,以制造垂直排列的石墨烯(VAG)生物传感器,用于超灵敏检测饮用水中的藻类毒素。这些 VAG 结构通过在印刷的石墨烯上施加强脉冲光,部分去除聚合物粘合剂,从而形成了最大程度增加石墨烯比表面积的结构。我们还制备了一种基于非法拉第电化学阻抗谱技术的无标记、低成本 VAG 生物传感器。该生物传感器对当地自来水中的微囊藻毒素-LR 的检测限低至 1.2ng/L。这种超灵敏的 VAG 生物传感器非常适合使用集成的卷对卷柔性版印刷和快速光子退火技术进行低成本大规模生产。