Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Appl Mater Interfaces. 2021 Mar 10;13(9):11185-11194. doi: 10.1021/acsami.0c21302. Epub 2021 Feb 27.
A growing body of research focuses on engineering materials for electrochemical detection of dopamine (DA), a critical neurotransmitter involved in motor function, reward processes, and blood pressure regulation. Among various sensing materials, graphene is highly attractive due to its excellent electrical conductivity and, in particular, the π-π interaction between the aromatic rings of DA and graphene. However, the lowest detection limits reported solely using graphene are nominally 1 nM. To improve the sensor sensitivity, various strategies are being explored, including chemical functionalization, heterostructure/composite formation, elemental doping, and modification with biomolecules (aptamers, enzymes, ). In this work, we demonstrate that commercially available graphene ink can exhibit selective and highly sensitive detection of DA by tuning the surface chemistry utilizing a simple, one-step annealing process. The annealing condition directly impacts the sensor response to DA, with the optimal conditions (30 min at 300 °C under 3% H + Ar) yielding a distinguishable and selective response to DA down to 5 pM. X-ray photoelectron spectroscopy (XPS) confirms that the improved selectivity is due to the increased fraction of oxygen functionalities (in particular, C-OH), while Raman spectroscopy shows a higher degree of defectiveness for this condition compared to others. Evaluation of the interaction of three molecular components of DA (, aromatic ring, hydroxyl groups, and amine group) with graphene confirms that the π-π interaction and -OH groups play a prominent role in the improved adsorption of DA on the graphene surface. Furthermore, we demonstrate a proof-of-concept, all-solution processable sensor on polyimide substrates using graphene ink. Tuning the sensor response by varying the annealing condition offers a simple avenue for developing sensitive, selective, and low-cost point-of-care biosensors, while low-temperature annealing ensures compatibility with flexible substrates, such as polyimide.
越来越多的研究集中在用于电化学检测多巴胺(DA)的工程材料上,DA 是一种关键的神经递质,参与运动功能、奖励过程和血压调节。在各种传感材料中,由于其优异的导电性,特别是 DA 与石墨烯的芳环之间的π-π相互作用,石墨烯具有很高的吸引力。然而,仅使用石墨烯报告的最低检测限名义上为 1 nM。为了提高传感器的灵敏度,正在探索各种策略,包括化学功能化、异质结构/复合材料形成、元素掺杂和生物分子(适体、酶、)修饰。在这项工作中,我们证明了商业上可用的石墨烯墨水可以通过利用简单的一步退火过程来调整表面化学来显示对 DA 的选择性和高灵敏度检测。退火条件直接影响传感器对 DA 的响应,最佳条件(在 3%H + Ar 下 300°C 退火 30 分钟)可产生对低至 5 pM 的 DA 的可区分和选择性响应。X 射线光电子能谱(XPS)证实,选择性的提高是由于增加了氧官能团(特别是 C-OH)的分数,而与其他条件相比,喇曼光谱显示出更高程度的缺陷性。对 DA 的三个分子成分(、芳环、羟基和胺基)与石墨烯相互作用的评估证实,π-π相互作用和-OH 基团在 DA 对石墨烯表面的吸附增强中起主要作用。此外,我们在聚酰亚胺衬底上展示了使用石墨烯墨水的基于溶液的全处理概念证明传感器。通过改变退火条件来调整传感器的响应为开发灵敏、选择性和低成本的即时护理生物传感器提供了一个简单的途径,而低温退火确保了与聚酰亚胺等柔性衬底的兼容性。