Suppr超能文献

早期胰腺癌检测。

Early detection of pancreatic cancer.

机构信息

Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.

Division of Gastroenterology and Hepatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

出版信息

Curr Opin Gastroenterol. 2020 Sep;36(5):456-461. doi: 10.1097/MOG.0000000000000663.

Abstract

PURPOSE OF REVIEW

Pancreatic cancer is the third leading cause of cancer death and with a dismal 5-year survival of 10%. Poor survival of pancreatic cancer is mostly due to its presentation and diagnosis at a late stage. The present article aims to update clinicians with recent progress in the field of early detection of pancreatic cancer.

RECENT FINDINGS

Pancreatic cancer screening is not recommended in the general population due to its low prevalence. In this review, we discuss high-risk groups for pancreatic cancer, including inherited predisposition to pancreatic cancer, new-onset diabetes, mucinous pancreatic cyst, and chronic pancreatitis. We discuss methods of enrichment of high-risk groups with clinical models using electronic health records and biomarkers. We also discuss improvements in imaging modalities and emerging role of machine learning and artificial intelligence in the field of imaging and biomarker to aid in early identification of pancreatic cancer.

SUMMARY

There are still vast challenges in the field of early detection of pancreatic cancer. We need to develop noninvasive prediagnostic validated biomarkers for longitudinal surveillance of high-risk individuals and imaging modalities that can identify pancreatic cancer early.

摘要

目的综述

胰腺癌是癌症死亡的第三大主要原因,其 5 年生存率仅为 10%。胰腺癌生存率低主要是因为其在晚期才被发现和诊断。本文旨在为临床医生提供胰腺癌早期检测领域的最新进展。

最近的发现

由于胰腺癌的发病率低,不建议在普通人群中进行胰腺癌筛查。在本综述中,我们讨论了胰腺癌的高危人群,包括遗传性胰腺癌易感性、新发糖尿病、黏液性胰腺囊肿和慢性胰腺炎。我们讨论了使用电子健康记录和生物标志物对高危人群进行临床模型富集的方法。我们还讨论了成像方式的改进,以及机器学习和人工智能在成像和生物标志物领域的新兴作用,以帮助早期识别胰腺癌。

总结

胰腺癌的早期检测领域仍然存在巨大的挑战。我们需要开发非侵入性的、经前期验证的生物标志物,用于高危人群的纵向监测,以及能够早期识别胰腺癌的成像方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验