Suppr超能文献

基于栅格的方法检测由于地图概括引起的水体表示的跨尺度变化。

A Raster-Based Methodology to Detect Cross-Scale Changes in Water Body Representations Caused by Map Generalization.

机构信息

School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China.

出版信息

Sensors (Basel). 2020 Jul 9;20(14):3823. doi: 10.3390/s20143823.

Abstract

In traditional change detection methods, remote sensing images are the primary raster data for change detection, and the changes produced from cartography generalization in multi-scale maps are not considered. The aim of this research was to use a new kind of raster data, named map tile data, to detect the change information of a multi-scale water system. From the perspective of spatial cognition, a hierarchical system is proposed to detect water area changes in multi-scale tile maps. The detection level of multi-scale water changes is divided into three layers: the body layer, the piece layer, and the slice layer. We also classify the water area changes and establish a set of indicators and rules used for the change detection of water areas in multi-scale raster maps. In addition, we determine the key technology in the process of water extraction from tile maps. For evaluation purposes, the proposed method is applied in several test areas using a map of Tiandi. After evaluating the accuracy of change detection, our experimental results confirm the efficiency and high accuracy of the proposed methodology.

摘要

在传统的变化检测方法中,遥感图像是变化检测的主要栅格数据,而多尺度地图中的制图概括产生的变化则未被考虑。本研究旨在利用一种新型的栅格数据,即瓦片数据,来检测多尺度水系的变化信息。从空间认知的角度出发,提出了一个分层系统来检测多尺度瓦片地图中的水域变化。多尺度水域变化的检测层次分为三层:主体层、分片层和切片层。我们还对水域变化进行了分类,并建立了一套用于多尺度栅格地图水域变化检测的指标和规则。此外,我们确定了从瓦片地图中提取水域的关键技术。为了评估目的,我们使用天地地图在几个测试区域应用了所提出的方法。通过评估变化检测的准确性,我们的实验结果证实了所提出的方法的效率和高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a13/7412066/17351c12a69a/sensors-20-03823-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验