Yao Kai, Zhong Hongjie, Liu Zhiliang, Xiong Min, Leng Shifeng, Zhang Jie, Xu Yun-Xiang, Wang Wenyan, Zhou Lang, Huang Haitao, Jen Alex K-Y
Institute of Photovoltaics/Department of Materials Science and Engineering , Nanchang University , Nanchang 330031 , China.
Department of Applied Physics , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China.
ACS Nano. 2019 May 28;13(5):5397-5409. doi: 10.1021/acsnano.9b00135. Epub 2019 Apr 30.
To maximize light coupling into the active layer, plasmonic nanostructures have been incorporated into both active layers of organic solar cells (OSCs) and perovskite solar cells (PSCs) with the aim of increasing light absorption, but reports have shown controversial results in electrical characteristics. In this work, we introduce a core-bishell concept to build plasmonic nanoparticles (NPs) with metal-inorganic semiconductor-organic semiconductor nanostructure. Specifically, Ag NPs were decorated with a titania/benzoic-acid-fullerene bishell (Ag@TiO@Pa), which enables the NPs to be compatible with fullerene acceptors or a perovskite absorber. Moreover, coating the Ag@TiO NP with a fullerene shell can activate efficient plasmon-exciton coupling and eliminate the charge accumulation, thus facilitating exciton dissociation and reducing the monomolecular recombination. The improved light absorption and enhanced carrier extraction of devices with Ag@TiO@Pa nanoparticles are responsible for the improved short-circuit current and fill factor, respectively. On the basis of the synergistic effects (optical and electrical), a series of plasmonic OSCs exhibited enhancement of 12.3-20.7% with a maximum power conversion efficiency of 13.0%, while the performance of plasmonic PSCs also showed an enhancement by 10.2% from 18.4% to 20.2%. This core-bishell design concept of plasmonic nanostructures demonstrates a general approach to improving the photovoltaic performance with both optical and electrical contributions.
为了使光最大程度地耦合到有源层中,等离子体纳米结构已被引入有机太阳能电池(OSC)和钙钛矿太阳能电池(PSC)的有源层中,目的是增加光吸收,但报告显示在电学特性方面存在有争议的结果。在这项工作中,我们引入了一种核壳概念来构建具有金属-无机半导体-有机半导体纳米结构的等离子体纳米颗粒(NP)。具体而言,用二氧化钛/苯甲酸-富勒烯双壳层修饰银纳米颗粒(Ag@TiO@Pa),这使得纳米颗粒能够与富勒烯受体或钙钛矿吸收体兼容。此外,用富勒烯壳层包覆Ag@TiO纳米颗粒可以激活有效的等离子体-激子耦合并消除电荷积累,从而促进激子解离并减少单分子复合。具有Ag@TiO@Pa纳米颗粒的器件中光吸收的改善和载流子提取的增强分别导致短路电流和填充因子的提高。基于协同效应(光学和电学),一系列等离子体OSC表现出12.3-20.7%的增强,最大功率转换效率为13.0%,而等离子体PSC的性能也从18.4%提高到20.2%,提高了10.2%。这种等离子体纳米结构的核壳设计概念展示了一种通过光学和电学贡献来提高光伏性能的通用方法。