Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695-8301, United States.
Langmuir. 2020 Aug 4;36(30):8792-8799. doi: 10.1021/acs.langmuir.0c01096. Epub 2020 Jul 24.
The use of porous micro-and nanostructured materials within microfluidic devices results in unique fluid transport characteristics. In this paper, we investigate the microfluidic behavior of hybrid alumina nanotube-based pathways within the hydrophobic carbon nanotube (CNT) barriers. These hybrid systems provide unique benefits for potential liquid transport control in porous structures with real-time sensing of fluids. In particular, we examine how the alignment of the alumina nanostructures with high internal porosity enables increased capillary action and sensitivity of detection. Based on the Lucas and Washburn model (LW) and the modified LW models, the microfluidic behavior of these systems is detailed. The time exponent prediction from the models for capillary transport in porous media is determined to be ≤0.5. The experimental results demonstrate that the average capillary rise in the nanostructured media driven by a capillary force follows t. The hydrophilic/electrically insulating and hydrophobic/electrically conductive patterned structures of the device are used for electronic measurements within the microfluidic channels. The device structure enables the detection of fluid samples of very low analyte concentrations (1 μM) that can be achieved due to the very high surface area of the hybrid structure combined with the electrical conductivity of the CNT support structure.
在微流控设备中使用多孔微纳米结构材料会导致独特的流体传输特性。在本文中,我们研究了混合氧化铝纳米管基通道在疏水碳纳米管(CNT)屏障内的微流行为。这些混合系统为多孔结构中的潜在液体传输控制提供了独特的优势,并具有实时感测流体的能力。特别是,我们研究了氧化铝纳米结构的高内孔率如何能够增强毛细作用和检测灵敏度。基于 Lucas 和 Washburn 模型(LW)和改进的 LW 模型,详细研究了这些系统的微流体行为。确定了模型对多孔介质中毛细传输的时间指数预测值≤0.5。实验结果表明,在纳米结构介质中由毛细力驱动的平均毛细上升遵循 t。该设备的亲水/电绝缘和疏水/电导电图案结构用于微流道内的电子测量。该设备结构能够检测非常低浓度的分析物(1 μM)的流体样本,这是由于混合结构的高表面积与 CNT 支撑结构的电导率相结合而实现的。