Suppr超能文献

大脑中视觉物体编码的人性化维度。

A humanness dimension to visual object coding in the brain.

机构信息

School of Psychology, The University of Sydney, Australia; Department of Cognitive Science, Macquarie University, Australia.

School of Psychology, The University of Sydney, Australia; School of Psychology, UNSW Sydney, Australia; Department of Cognitive Science, Macquarie University, Australia.

出版信息

Neuroimage. 2020 Nov 1;221:117139. doi: 10.1016/j.neuroimage.2020.117139. Epub 2020 Jul 11.

Abstract

Neuroimaging studies investigating human object recognition have primarily focused on a relatively small number of object categories, in particular, faces, bodies, scenes, and vehicles. More recent studies have taken a broader focus, investigating hypothesized dichotomies, for example, animate versus inanimate, and continuous feature dimensions, such as biologically similarity. These studies typically have used stimuli that are identified as animate or inanimate, neglecting objects that may not fit into this dichotomy. We generated a novel stimulus set including standard objects and objects that blur the animate-inanimate dichotomy, for example, robots and toy animals. We used MEG time-series decoding to study the brain's emerging representation of these objects. Our analysis examined contemporary models of object coding such as dichotomous animacy, as well as several new higher order models that take into account an object's capacity for agency (i.e. its ability to move voluntarily) and capacity to experience the world. We show that early (0-200 ​ms) responses are predicted by the stimulus shape, assessed using a retinotopic model and shape similarity computed from human judgments. Thereafter, higher order models of agency/experience provided a better explanation of the brain's representation of the stimuli. Strikingly, a model of human similarity provided the best account for the brain's representation after an initial perceptual processing phase. Our findings provide evidence for a new dimension of object coding in the human brain - one that has a "human-centric" focus.

摘要

神经影像学研究主要集中在少数几个物体类别上,特别是人脸、身体、场景和车辆。最近的研究则采用了更广泛的视角,研究假设的二分法,例如有生命的与无生命的,以及连续的特征维度,例如生物相似性。这些研究通常使用被认为是有生命或无生命的刺激物,忽略了可能不符合这种二分法的物体。我们生成了一个新的刺激集,包括标准物体和模糊有生命和无生命二分法的物体,例如机器人和玩具动物。我们使用 MEG 时间序列解码来研究大脑对这些物体的新兴表示。我们的分析考察了物体编码的当代模型,例如二分法的有生命性,以及几个新的高阶模型,这些模型考虑了物体的能动性(即其自愿运动的能力)和体验世界的能力。我们表明,早期(0-200 毫秒)的反应由刺激形状预测,使用视网膜模型和人类判断计算的形状相似度进行评估。此后,能动性/经验的高阶模型更好地解释了大脑对刺激的表示。引人注目的是,在初始感知处理阶段之后,人类相似性模型为大脑的表示提供了最佳解释。我们的发现为人类大脑中的物体编码提供了一个新维度——一个以“以人为中心”为重点的维度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验