Carlson Thomas, Tovar David A, Alink Arjen, Kriegeskorte Nikolaus
Department of Cognitive Sciences, Macquarie University, Sydney, NSW, Australia.
J Vis. 2013 Aug 1;13(10):1. doi: 10.1167/13.10.1.
Human object recognition is remarkably efficient. In recent years, significant advancements have been made in our understanding of how the brain represents visual objects and organizes them into categories. Recent studies using pattern analyses methods have characterized a representational space of objects in human and primate inferior temporal cortex in which object exemplars are discriminable and cluster according to category (e.g., faces and bodies). In the present study we examined how category structure in object representations emerges in the first 1000 ms of visual processing. In the study, participants viewed 24 object exemplars with a planned categorical structure comprised of four levels ranging from highly specific (individual exemplars) to highly abstract (animate vs. inanimate), while their brain activity was recorded with magnetoencephalography (MEG). We used a sliding time window decoding approach to decode the exemplar and the exemplar's category that participants were viewing on a moment-to-moment basis. We found exemplar and category membership could be decoded from the neuromagnetic recordings shortly after stimulus onset (<100 ms) with peak decodability following thereafter. Latencies for peak decodability varied systematically with the level of category abstraction with more abstract categories emerging later, indicating that the brain hierarchically constructs category representations. In addition, we examined the stationarity of patterns of activity in the brain that encode object category information and show these patterns vary over time, suggesting the brain might use flexible time varying codes to represent visual object categories.
人类的物体识别非常高效。近年来,我们在理解大脑如何表征视觉物体并将它们组织成类别方面取得了重大进展。最近使用模式分析方法的研究已经描绘了人类和灵长类动物颞下回中物体的表征空间,在这个空间中,物体样本是可区分的,并根据类别(例如,面部和身体)聚类。在本研究中,我们研究了在视觉处理的最初1000毫秒内,物体表征中的类别结构是如何出现的。在这项研究中,参与者观看了24个具有计划好的类别结构的物体样本,该结构由四个层次组成,从高度具体(个体样本)到高度抽象(有生命与无生命),同时用脑磁图(MEG)记录他们的大脑活动。我们使用滑动时间窗口解码方法来逐时刻解码参与者正在观看的样本及其类别。我们发现,在刺激开始后不久(<100毫秒),就可以从神经磁记录中解码出样本和类别成员身份,此后解码能力达到峰值。峰值解码的潜伏期随着类别抽象程度的不同而系统地变化,更抽象的类别出现得更晚,这表明大脑是分层构建类别表征的。此外,我们研究了编码物体类别信息的大脑活动模式的平稳性,并发现这些模式随时间变化,这表明大脑可能使用灵活的随时间变化的代码来表征视觉物体类别。