Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, USA.
Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
J Biol Chem. 2020 Aug 28;295(35):12485-12497. doi: 10.1074/jbc.RA119.011229. Epub 2020 Jul 14.
Barth syndrome is a mitochondrial myopathy resulting from mutations in the tafazzin () gene encoding a phospholipid transacylase required for cardiolipin remodeling. Cardiolipin is a phospholipid of the inner mitochondrial membrane essential for the function of numerous mitochondrial proteins and processes. However, it is unclear how tafazzin deficiency impacts cardiac mitochondrial metabolism. To address this question while avoiding confounding effects of cardiomyopathy on mitochondrial phenotype, we utilized -shRNA knockdown ( ) mice, which exhibit defective cardiolipin remodeling and respiratory supercomplex instability characteristic of human Barth syndrome but normal cardiac function into adulthood. Consistent with previous reports from other models, mitochondrial HO emission and oxidative damage were greater in than in wild-type (WT) hearts, but there were no differences in oxidative phosphorylation coupling efficiency or membrane potential. Fatty acid and pyruvate oxidation capacities were 40-60% lower in mitochondria, but an up-regulation of glutamate oxidation supported respiration rates approximating those with pyruvate and palmitoylcarnitine in WT. Deficiencies in mitochondrial CoA and shifts in the cardiac acyl-CoA profile paralleled changes in fatty acid oxidation enzymes and acyl-CoA thioesterases, suggesting limitations of CoA availability or "trapping" in mitochondrial metabolism. Incubation of mitochondria with exogenous CoA partially rescued pyruvate and palmitoylcarnitine oxidation capacities, implicating dysregulation of CoA-dependent intermediary metabolism rather than respiratory chain defects in the bioenergetic impacts of tafazzin deficiency. These findings support links among cardiolipin abnormalities, respiratory supercomplex instability, and mitochondrial oxidant production and shed new light on the distinct metabolic consequences of tafazzin deficiency in the mammalian heart.
巴特综合征是一种由 tafazzin ()基因突变引起的线粒体肌病,该基因编码一种磷脂转酰酶,对于心磷脂重塑是必需的。心磷脂是一种内线粒体膜的磷脂,对于许多线粒体蛋白和过程的功能是必需的。然而,tafazzin 缺乏如何影响心脏线粒体代谢尚不清楚。为了解决这个问题,同时避免心肌病对线粒体表型的混杂影响,我们利用了 -shRNA 敲低 () 小鼠,这些小鼠表现出缺陷的心磷脂重塑和呼吸超级复合物不稳定性,这是人类巴特综合征的特征,但成年后心脏功能正常。与其他模型的先前报道一致,与野生型 (WT) 心脏相比, 中的线粒体 HO 发射和氧化损伤更大,但氧化磷酸化偶联效率或膜电位没有差异。 中的脂肪酸和丙酮酸氧化能力降低了 40-60%,但谷氨酸氧化的上调支持了接近 WT 中丙酮酸和棕榈酰肉碱的呼吸速率。线粒体 CoA 的缺乏和心脏酰基辅酶 A 谱的变化与脂肪酸氧化酶和酰基辅酶 A 硫酯酶的变化平行,表明 CoA 可用性或“捕获”在 线粒体代谢中的限制。将外源性 CoA 孵育到 线粒体中部分挽救了丙酮酸和棕榈酰肉碱的氧化能力,这表明 tafazzin 缺乏对生物能量学的影响与其呼吸链缺陷相关,而是与 CoA 依赖性中间代谢物的失调有关。这些发现支持了心磷脂异常、呼吸超级复合物不稳定性和线粒体氧化剂产生之间的联系,并为 tafazzin 缺乏在哺乳动物心脏中的独特代谢后果提供了新的见解。