Schmidt Jennifer E, Poret-Peterson Amisha, Lowry Carolyn J, Gaudin Amélie C M
Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA, USA.
USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, CA, USA.
AoB Plants. 2020 Jun 19;12(4):plaa026. doi: 10.1093/aobpla/plaa026. eCollection 2020 Aug.
Plant-microbe interactions in the rhizosphere influence rates of organic matter mineralization and nutrient cycling that are critical to sustainable agricultural productivity. Agricultural intensification, particularly the introduction of synthetic fertilizer in the USA, altered the abundance and dominant forms of nitrogen (N), a critical plant nutrient, potentially imposing selection pressure on plant traits and plant-microbe interactions regulating N cycling and acquisition. We hypothesized that maize adaptation to synthetic N fertilization altered root functional traits and rhizosphere microbial nutrient cycling, reducing maize ability to acquire N from organic sources. Six maize genotypes released pre-fertilizer (1936, 1939, 1942) or post-fertilizer (1984, 1994, 2015) were grown in rhizoboxes containing patches of N-labelled clover/vetch residue. Multivariate approaches did not identify architectural traits that strongly and consistently predicted rhizosphere processes, though metrics of root morphological plasticity were linked to carbon- and N-cycling enzyme activities. Root traits, potential activities of extracellular enzymes (BG, LAP, NAG, urease), abundances of N-cycling genes (, , , , ) and uptake of organic N did not differ between eras of release despite substantial variation among genotypes and replicates. Thus, agricultural intensification does not appear to have impaired N cycling and acquisition from organic sources by modern maize and its rhizobiome. Improved mechanistic understanding of rhizosphere processes and their response to selective pressures will contribute greatly to rhizosphere engineering for sustainable agriculture.
根际中的植物-微生物相互作用影响着有机质矿化速率和养分循环,而这些对于可持续农业生产力至关重要。农业集约化,特别是美国合成肥料的引入,改变了关键植物养分氮(N)的丰度和主要形态,可能对调节氮循环和获取的植物性状及植物-微生物相互作用施加选择压力。我们假设玉米对合成氮肥的适应性改变了根系功能性状和根际微生物养分循环,降低了玉米从有机源获取氮的能力。六种在施用肥料前(1936年、1939年、1942年)或施用肥料后(1984年、1994年、2015年)发布的玉米基因型种植在装有氮标记的三叶草/巢菜残体斑块的根箱中。多变量方法未识别出能强烈且一致地预测根际过程的结构性状,尽管根系形态可塑性指标与碳和氮循环酶活性相关。尽管基因型和重复之间存在很大差异,但不同发布时代的根系性状、细胞外酶(BG、LAP、NAG、脲酶)的潜在活性、氮循环基因( 、 、 、 、 )的丰度以及有机氮的吸收没有差异。因此,农业集约化似乎并未损害现代玉米及其根际微生物群落从有机源进行的氮循环和氮获取。对根际过程及其对选择压力的响应有更深入的机理理解将极大地有助于可持续农业的根际工程。